from __future__ import annotations from dataclasses import dataclass from functools import partial from types import SimpleNamespace from typing import Any import gradio as gr from adetailer import AFTER_DETAILER, __version__ from adetailer.args import ALL_ARGS, MASK_MERGE_INVERT from controlnet_ext import controlnet_exists, controlnet_type, get_cn_models if controlnet_type == "forge": from lib_controlnet import global_state cn_module_choices = { "inpaint": list(global_state.get_filtered_preprocessors("Inpaint")), "lineart": list(global_state.get_filtered_preprocessors("Lineart")), "openpose": list(global_state.get_filtered_preprocessors("OpenPose")), "tile": list(global_state.get_filtered_preprocessors("Tile")), "scribble": list(global_state.get_filtered_preprocessors("Scribble")), "depth": list(global_state.get_filtered_preprocessors("Depth")), } else: cn_module_choices = { "inpaint": [ "inpaint_global_harmonious", "inpaint_only", "inpaint_only+lama", ], "lineart": [ "lineart_coarse", "lineart_realistic", "lineart_anime", "lineart_anime_denoise", ], "openpose": ["openpose_full", "dw_openpose_full"], "tile": ["tile_resample", "tile_colorfix", "tile_colorfix+sharp"], "scribble": ["t2ia_sketch_pidi"], "depth": ["depth_midas", "depth_hand_refiner"], } class Widgets(SimpleNamespace): def tolist(self): return [getattr(self, attr) for attr in ALL_ARGS.attrs] @dataclass class WebuiInfo: ad_model_list: list[str] sampler_names: list[str] scheduler_names: list[str] t2i_button: gr.Button i2i_button: gr.Button checkpoints_list: list[str] vae_list: list[str] def gr_interactive(value: bool = True): return gr.update(interactive=value) def ordinal(n: int) -> str: d = {1: "st", 2: "nd", 3: "rd"} return str(n) + ("th" if 11 <= n % 100 <= 13 else d.get(n % 10, "th")) def suffix(n: int, c: str = " ") -> str: return "" if n == 0 else c + ordinal(n + 1) def on_widget_change(state: dict, value: Any, *, attr: str): if "is_api" in state: state = state.copy() state.pop("is_api") state[attr] = value return state def on_generate_click(state: dict, *values: Any): for attr, value in zip(ALL_ARGS.attrs, values): state[attr] = value state["is_api"] = () return state def on_ad_model_update(model: str): if "-world" in model: return gr.update( visible=True, placeholder="Comma separated class names to detect, ex: 'person,cat'. default: COCO 80 classes", ) return gr.update(visible=False, placeholder="") def on_cn_model_update(cn_model_name: str): cn_model_name = cn_model_name.replace("inpaint_depth", "depth") for t in cn_module_choices: if t in cn_model_name: choices = cn_module_choices[t] return gr.update(visible=True, choices=choices, value=choices[0]) return gr.update(visible=False, choices=["None"], value="None") def elem_id(item_id: str, n: int, is_img2img: bool) -> str: tap = "img2img" if is_img2img else "txt2img" suf = suffix(n, "_") return f"script_{tap}_adetailer_{item_id}{suf}" def state_init(w: Widgets) -> dict[str, Any]: return {attr: getattr(w, attr).value for attr in ALL_ARGS.attrs} def adui( num_models: int, is_img2img: bool, webui_info: WebuiInfo, ): states = [] infotext_fields = [] eid = partial(elem_id, n=0, is_img2img=is_img2img) with gr.Accordion(AFTER_DETAILER, open=False, elem_id=eid("ad_main_accordion")): with gr.Row(): with gr.Column(scale=6): ad_enable = gr.Checkbox( label="Enable ADetailer", value=False, visible=True, elem_id=eid("ad_enable"), ) with gr.Column(scale=6): ad_skip_img2img = gr.Checkbox( label="Skip img2img", value=False, visible=is_img2img, elem_id=eid("ad_skip_img2img"), ) with gr.Column(scale=1, min_width=180): gr.Markdown( f"v{__version__}", elem_id=eid("ad_version"), ) infotext_fields.append((ad_enable, "ADetailer enable")) infotext_fields.append((ad_skip_img2img, "ADetailer skip img2img")) with gr.Group(), gr.Tabs(): for n in range(num_models): with gr.Tab(ordinal(n + 1)): state, infofields = one_ui_group( n=n, is_img2img=is_img2img, webui_info=webui_info, ) states.append(state) infotext_fields.extend(infofields) # components: [bool, bool, dict, dict, ...] components = [ad_enable, ad_skip_img2img, *states] return components, infotext_fields def one_ui_group(n: int, is_img2img: bool, webui_info: WebuiInfo): w = Widgets() eid = partial(elem_id, n=n, is_img2img=is_img2img) model_choices = ( [*webui_info.ad_model_list, "None"] if n == 0 else ["None", *webui_info.ad_model_list] ) with gr.Group(): with gr.Row(variant="compact"): w.ad_tap_enable = gr.Checkbox( label=f"Enable this tap ({ordinal(n + 1)})", value=True, visible=True, elem_id=eid("ad_tap_enable"), ) with gr.Row(): w.ad_model = gr.Dropdown( label="ADetailer detector" + suffix(n), choices=model_choices, value=model_choices[0], visible=True, type="value", elem_id=eid("ad_model"), info="Select a model to use for detection.", ) with gr.Row(): w.ad_model_classes = gr.Textbox( label="ADetailer detector classes" + suffix(n), value="", visible=False, elem_id=eid("ad_classes"), info="Comma separated class names to detect, ex: 'girl,cat'.", ) w.ad_model.change( on_ad_model_update, inputs=w.ad_model, outputs=w.ad_model_classes, queue=False, ) gr.HTML("
") with gr.Group(): with gr.Row(elem_id=eid("ad_toprow_prompt")): w.ad_prompt = gr.Textbox( label="ad_prompt" + suffix(n), show_label=False, lines=3, placeholder="ADetailer prompt" + suffix(n) + "\nIf blank, the main prompt is used.", elem_id=eid("ad_prompt"), ) with gr.Row(elem_id=eid("ad_toprow_negative_prompt")): w.ad_negative_prompt = gr.Textbox( label="ad_negative_prompt" + suffix(n), show_label=False, lines=2, placeholder="ADetailer negative prompt" + suffix(n) + "\nIf blank, the main negative prompt is used.", elem_id=eid("ad_negative_prompt"), ) with gr.Group(): with gr.Accordion( "Detection", open=False, elem_id=eid("ad_detection_accordion") ): detection(w, n, is_img2img) with gr.Accordion( "Mask Preprocessing", open=False, elem_id=eid("ad_mask_preprocessing_accordion"), ): mask_preprocessing(w, n, is_img2img) with gr.Accordion( "Inpainting", open=False, elem_id=eid("ad_inpainting_accordion") ): inpainting(w, n, is_img2img, webui_info) with gr.Group(): controlnet(w, n, is_img2img) state = gr.State(lambda: state_init(w)) for attr in ALL_ARGS.attrs: widget = getattr(w, attr) on_change = partial(on_widget_change, attr=attr) widget.change(fn=on_change, inputs=[state, widget], outputs=state, queue=False) all_inputs = [state, *w.tolist()] target_button = webui_info.i2i_button if is_img2img else webui_info.t2i_button target_button.click( fn=on_generate_click, inputs=all_inputs, outputs=state, queue=False ) infotext_fields = [(getattr(w, attr), name + suffix(n)) for attr, name in ALL_ARGS] return state, infotext_fields def detection(w: Widgets, n: int, is_img2img: bool): eid = partial(elem_id, n=n, is_img2img=is_img2img) with gr.Row(): with gr.Column(variant="compact"): w.ad_confidence = gr.Slider( label="Detection model confidence threshold" + suffix(n), minimum=0.0, maximum=1.0, step=0.01, value=0.3, visible=True, elem_id=eid("ad_confidence"), info="Confidence threshold for detection model.", ) w.ad_mask_k_largest = gr.Slider( label="Mask only the top k largest (0 to disable)" + suffix(n), minimum=0, maximum=10, step=1, value=0, visible=True, elem_id=eid("ad_mask_k_largest"), info="Use only the top k largest objects for masking.", ) with gr.Column(variant="compact"): w.ad_mask_min_ratio = gr.Slider( label="Mask min area ratio" + suffix(n), minimum=0.0, maximum=1.0, step=0.001, value=0.0, visible=True, elem_id=eid("ad_mask_min_ratio"), info="Minimum area ratio for masking.", ) w.ad_mask_max_ratio = gr.Slider( label="Mask max area ratio" + suffix(n), minimum=0.0, maximum=1.0, step=0.001, value=1.0, visible=True, elem_id=eid("ad_mask_max_ratio"), info="Maximum area ratio for masking.", ) def mask_preprocessing(w: Widgets, n: int, is_img2img: bool): eid = partial(elem_id, n=n, is_img2img=is_img2img) with gr.Group(): with gr.Row(): with gr.Column(variant="compact"): w.ad_x_offset = gr.Slider( label="Mask x(→) offset" + suffix(n), minimum=-200, maximum=200, step=1, value=0, visible=True, elem_id=eid("ad_x_offset"), info="Mask x offset (→) in pixels.", ) w.ad_y_offset = gr.Slider( label="Mask y(↑) offset" + suffix(n), minimum=-200, maximum=200, step=1, value=0, visible=True, elem_id=eid("ad_y_offset"), info="Mask y offset (↑) in pixels.", ) with gr.Column(variant="compact"): w.ad_dilate_erode = gr.Slider( label="Mask erosion (-) / dilation (+)" + suffix(n), minimum=-128, maximum=128, step=4, value=4, visible=True, elem_id=eid("ad_dilate_erode"), info="Mask erosion (-) / dilation (+) in pixels.", ) with gr.Row(): w.ad_mask_merge_invert = gr.Radio( label="Mask merge mode" + suffix(n), choices=MASK_MERGE_INVERT, value="None", elem_id=eid("ad_mask_merge_invert"), info="Mask merge mode. (None: do nothing, Merge: merge masks, Merge and Invert: merge all masks and invert)", ) def inpainting(w: Widgets, n: int, is_img2img: bool, webui_info: WebuiInfo): eid = partial(elem_id, n=n, is_img2img=is_img2img) with gr.Group(): with gr.Row(): w.ad_mask_blur = gr.Slider( label="Inpaint mask blur" + suffix(n), minimum=0, maximum=64, step=1, value=4, visible=True, elem_id=eid("ad_mask_blur"), ) w.ad_denoising_strength = gr.Slider( label="Inpaint denoising strength" + suffix(n), minimum=0.0, maximum=1.0, step=0.01, value=0.4, visible=True, elem_id=eid("ad_denoising_strength"), ) with gr.Row(): with gr.Column(variant="compact"): w.ad_inpaint_only_masked = gr.Checkbox( label="Inpaint only masked" + suffix(n), value=True, visible=True, elem_id=eid("ad_inpaint_only_masked"), ) w.ad_inpaint_only_masked_padding = gr.Slider( label="Inpaint only masked padding, pixels" + suffix(n), minimum=0, maximum=256, step=4, value=32, visible=True, elem_id=eid("ad_inpaint_only_masked_padding"), ) w.ad_inpaint_only_masked.change( gr_interactive, inputs=w.ad_inpaint_only_masked, outputs=w.ad_inpaint_only_masked_padding, queue=False, ) with gr.Column(variant="compact"): w.ad_use_inpaint_width_height = gr.Checkbox( label="Use separate width/height" + suffix(n), value=False, visible=True, elem_id=eid("ad_use_inpaint_width_height"), ) w.ad_inpaint_width = gr.Slider( label="inpaint width" + suffix(n), minimum=64, maximum=2048, step=4, value=512, visible=True, elem_id=eid("ad_inpaint_width"), ) w.ad_inpaint_height = gr.Slider( label="inpaint height" + suffix(n), minimum=64, maximum=2048, step=4, value=512, visible=True, elem_id=eid("ad_inpaint_height"), ) w.ad_use_inpaint_width_height.change( lambda value: (gr_interactive(value), gr_interactive(value)), inputs=w.ad_use_inpaint_width_height, outputs=[w.ad_inpaint_width, w.ad_inpaint_height], queue=False, ) with gr.Row(): with gr.Column(variant="compact"): w.ad_use_steps = gr.Checkbox( label="Use separate steps" + suffix(n), value=False, visible=True, elem_id=eid("ad_use_steps"), ) w.ad_steps = gr.Slider( label="ADetailer steps" + suffix(n), minimum=1, maximum=150, step=1, value=28, visible=True, elem_id=eid("ad_steps"), ) w.ad_use_steps.change( gr_interactive, inputs=w.ad_use_steps, outputs=w.ad_steps, queue=False, ) with gr.Column(variant="compact"): w.ad_use_cfg_scale = gr.Checkbox( label="Use separate CFG scale" + suffix(n), value=False, visible=True, elem_id=eid("ad_use_cfg_scale"), ) w.ad_cfg_scale = gr.Slider( label="ADetailer CFG scale" + suffix(n), minimum=0.0, maximum=30.0, step=0.5, value=7.0, visible=True, elem_id=eid("ad_cfg_scale"), ) w.ad_use_cfg_scale.change( gr_interactive, inputs=w.ad_use_cfg_scale, outputs=w.ad_cfg_scale, queue=False, ) with gr.Row(): with gr.Column(variant="compact"): w.ad_use_checkpoint = gr.Checkbox( label="Use separate checkpoint" + suffix(n), value=False, visible=True, elem_id=eid("ad_use_checkpoint"), ) ckpts = ["Use same checkpoint", *webui_info.checkpoints_list] w.ad_checkpoint = gr.Dropdown( label="ADetailer checkpoint" + suffix(n), choices=ckpts, value=ckpts[0], visible=True, elem_id=eid("ad_checkpoint"), ) with gr.Column(variant="compact"): w.ad_use_vae = gr.Checkbox( label="Use separate VAE" + suffix(n), value=False, visible=True, elem_id=eid("ad_use_vae"), ) vaes = ["Use same VAE", *webui_info.vae_list] w.ad_vae = gr.Dropdown( label="ADetailer VAE" + suffix(n), choices=vaes, value=vaes[0], visible=True, elem_id=eid("ad_vae"), ) with gr.Row(), gr.Column(variant="compact"): w.ad_use_sampler = gr.Checkbox( label="Use separate sampler" + suffix(n), value=False, visible=True, elem_id=eid("ad_use_sampler"), ) with gr.Row(): w.ad_sampler = gr.Dropdown( label="ADetailer sampler" + suffix(n), choices=webui_info.sampler_names, value=webui_info.sampler_names[0], visible=True, elem_id=eid("ad_sampler"), ) scheduler_names = [ "Use same scheduler", *webui_info.scheduler_names, ] w.ad_scheduler = gr.Dropdown( label="ADetailer scheduler" + suffix(n), choices=scheduler_names, value=scheduler_names[0], visible=len(scheduler_names) > 1, elem_id=eid("ad_scheduler"), ) w.ad_use_sampler.change( lambda value: (gr_interactive(value), gr_interactive(value)), inputs=w.ad_use_sampler, outputs=[w.ad_sampler, w.ad_scheduler], queue=False, ) with gr.Row(): with gr.Column(variant="compact"): w.ad_use_noise_multiplier = gr.Checkbox( label="Use separate noise multiplier" + suffix(n), value=False, visible=True, elem_id=eid("ad_use_noise_multiplier"), ) w.ad_noise_multiplier = gr.Slider( label="Noise multiplier for img2img" + suffix(n), minimum=0.5, maximum=1.5, step=0.01, value=1.0, visible=True, elem_id=eid("ad_noise_multiplier"), ) w.ad_use_noise_multiplier.change( gr_interactive, inputs=w.ad_use_noise_multiplier, outputs=w.ad_noise_multiplier, queue=False, ) with gr.Column(variant="compact"): w.ad_use_clip_skip = gr.Checkbox( label="Use separate CLIP skip" + suffix(n), value=False, visible=True, elem_id=eid("ad_use_clip_skip"), ) w.ad_clip_skip = gr.Slider( label="ADetailer CLIP skip" + suffix(n), minimum=1, maximum=12, step=1, value=1, visible=True, elem_id=eid("ad_clip_skip"), ) w.ad_use_clip_skip.change( gr_interactive, inputs=w.ad_use_clip_skip, outputs=w.ad_clip_skip, queue=False, ) with gr.Row(), gr.Column(variant="compact"): w.ad_restore_face = gr.Checkbox( label="Restore faces after ADetailer" + suffix(n), value=False, elem_id=eid("ad_restore_face"), info="Apply face restoration after ADetailer.", ) def controlnet(w: Widgets, n: int, is_img2img: bool): eid = partial(elem_id, n=n, is_img2img=is_img2img) cn_models = ["None", "Passthrough", *get_cn_models()] with gr.Row(variant="panel"): with gr.Column(variant="compact"): w.ad_controlnet_model = gr.Dropdown( label="ControlNet model" + suffix(n), choices=cn_models, value="None", visible=True, type="value", interactive=controlnet_exists, elem_id=eid("ad_controlnet_model"), ) w.ad_controlnet_module = gr.Dropdown( label="ControlNet module" + suffix(n), choices=["None"], value="None", visible=False, type="value", interactive=controlnet_exists, elem_id=eid("ad_controlnet_module"), ) w.ad_controlnet_weight = gr.Slider( label="ControlNet weight" + suffix(n), minimum=0.0, maximum=1.0, step=0.01, value=1.0, visible=True, interactive=controlnet_exists, elem_id=eid("ad_controlnet_weight"), ) w.ad_controlnet_model.change( on_cn_model_update, inputs=w.ad_controlnet_model, outputs=w.ad_controlnet_module, queue=False, ) with gr.Column(variant="compact"): w.ad_controlnet_guidance_start = gr.Slider( label="ControlNet guidance start" + suffix(n), minimum=0.0, maximum=1.0, step=0.01, value=0.0, visible=True, interactive=controlnet_exists, elem_id=eid("ad_controlnet_guidance_start"), ) w.ad_controlnet_guidance_end = gr.Slider( label="ControlNet guidance end" + suffix(n), minimum=0.0, maximum=1.0, step=0.01, value=1.0, visible=True, interactive=controlnet_exists, elem_id=eid("ad_controlnet_guidance_end"), )