Files
adetailer/scripts/!adetailer.py

593 lines
19 KiB
Python

from __future__ import annotations
import platform
import sys
from copy import copy
from pathlib import Path
from typing import Any
import gradio as gr
import torch
import modules # noqa: F401
from adetailer import __version__, get_models, mediapipe_predict, ultralytics_predict
from adetailer.common import dilate_erode, is_all_black, offset
from controlnet_ext import ControlNetExt, controlnet_exists, get_cn_inpaint_models
from modules import images, safe, script_callbacks, scripts, shared
from modules.paths import data_path, models_path
from modules.processing import (
StableDiffusionProcessingImg2Img,
create_infotext,
process_images,
)
from modules.shared import cmd_opts, opts
try:
from rich import print
from rich.traceback import install
install(show_locals=True)
except Exception:
pass
AFTER_DETAILER = "After Detailer"
adetailer_dir = Path(models_path, "adetailer")
model_mapping = get_models(adetailer_dir)
print(
f"[-] ADetailer initialized. version: {__version__}, num models: {len(model_mapping)}"
)
ALL_ARGS = [
("ad_enable", "ADetailer enable", bool),
("ad_model", "ADetailer model", str),
("ad_prompt", "ADetailer prompt", str),
("ad_negative_prompt", "ADetailer negative prompt", str),
("ad_conf", "ADetailer conf", int),
("ad_dilate_erode", "ADetailer dilate/erode", int),
("ad_x_offset", "ADetailer x offset", int),
("ad_y_offset", "ADetailer y offset", int),
("ad_mask_blur", "ADetailer mask blur", int),
("ad_denoising_strength", "ADetailer denoising strength", float),
("ad_inpaint_full_res", "ADetailer inpaint full", bool),
("ad_inpaint_full_res_padding", "ADetailer inpaint padding", int),
("ad_use_inpaint_width_height", "ADetailer use inpaint width/height", bool),
("ad_inpaint_width", "ADetailer inpaint width", int),
("ad_inpaint_height", "ADetailer inpaint height", int),
("ad_cfg_scale", "ADetailer CFG scale", float),
("ad_controlnet_model", "ADetailer ControlNet model", str),
("ad_controlnet_weight", "ADetailer ControlNet weight", float),
]
class ADetailerArgs:
ad_enable: bool
ad_model: str
ad_prompt: str
ad_negative_prompt: str
ad_conf: float
ad_dilate_erode: int
ad_x_offset: int
ad_y_offset: int
ad_mask_blur: int
ad_denoising_strength: float
ad_inpaint_full_res: bool
ad_inpaint_full_res_padding: int
ad_use_inpaint_width_height: bool
ad_inpaint_width: int
ad_inpaint_height: int
ad_cfg_scale: float
ad_controlnet_model: str
ad_controlnet_weight: float
def __init__(self, *args):
args = self.ensure_dtype(args)
for i, (attr, *_) in enumerate(ALL_ARGS):
if attr == "ad_conf":
setattr(self, attr, args[i] / 100.0)
else:
setattr(self, attr, args[i])
def asdict(self):
return self.__dict__
def ensure_dtype(self, args):
args = list(args)
for i, (attr, _, dtype) in enumerate(ALL_ARGS):
if not isinstance(args[i], dtype):
try:
if dtype is bool:
args[i] = self.is_true(args[i])
else:
args[i] = dtype(args[i])
except ValueError as e:
msg = f"Error converting {args[i]!r}({attr}) to {dtype}: {e}"
raise ValueError(msg) from e
return args
def is_true(self, value: Any):
if isinstance(value, bool):
return value
return str(value).lower() == "true"
class Widgets:
def tolist(self):
return [getattr(self, attr) for attr, *_ in ALL_ARGS]
class ChangeTorchLoad:
def __enter__(self):
self.orig = torch.load
torch.load = safe.unsafe_torch_load
def __exit__(self, *args, **kwargs):
torch.load = self.orig
def gr_show(visible=True):
return {"visible": visible, "__type__": "update"}
class AfterDetailerScript(scripts.Script):
def __init__(self):
super().__init__()
self.controlnet_ext = None
self.ultralytics_device = self.get_ultralytics_device()
def title(self):
return AFTER_DETAILER
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
model_list = ["None"] + list(model_mapping.keys())
w = Widgets()
with gr.Accordion(AFTER_DETAILER, open=False, elem_id="AD_main_acc"):
with gr.Row():
w.ad_enable = gr.Checkbox(
label="Enable ADetailer",
value=True,
visible=True,
)
with gr.Group():
with gr.Row():
w.ad_model = gr.Dropdown(
label="ADetailer model",
choices=model_list,
value=model_list[0],
visible=True,
type="value",
)
with gr.Row():
w.ad_prompt = gr.Textbox(
label="ad_prompt",
show_label=False,
lines=3,
placeholder="ADetailer prompt",
)
with gr.Row():
w.ad_negative_prompt = gr.Textbox(
label="ad_negative_prompt",
show_label=False,
lines=2,
placeholder="ADetailer negative prompt",
)
with gr.Group():
with gr.Row():
w.ad_conf = gr.Slider(
label="ADetailer confidence threshold %",
minimum=0,
maximum=100,
step=1,
value=30,
visible=True,
)
w.ad_dilate_erode = gr.Slider(
label="ADetailer erosion (-) / dilation (+)",
minimum=-128,
maximum=128,
step=4,
value=32,
visible=True,
)
with gr.Row():
w.ad_x_offset = gr.Slider(
label="ADetailer x(→) offset",
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
)
w.ad_y_offset = gr.Slider(
label="ADetailer y(↑) offset",
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
)
with gr.Row():
w.ad_mask_blur = gr.Slider(
label="ADetailer mask blur",
minimum=0,
maximum=64,
step=1,
value=4,
visible=True,
)
w.ad_denoising_strength = gr.Slider(
label="ADetailer denoising strength",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.4,
visible=True,
)
with gr.Row():
w.ad_inpaint_full_res = gr.Checkbox(
label="Inpaint at full resolution ",
value=True,
visible=True,
)
w.ad_inpaint_full_res_padding = gr.Slider(
label="Inpaint at full resolution padding, pixels ",
minimum=0,
maximum=256,
step=4,
value=0,
visible=True,
)
with gr.Row():
w.ad_use_inpaint_width_height = gr.Checkbox(
label="Use inpaint width/height",
value=False,
visible=True,
)
w.ad_inpaint_width = gr.Slider(
label="inpaint width",
minimum=4,
maximum=1024,
step=4,
value=512,
visible=True,
)
w.ad_inpaint_height = gr.Slider(
label="inpaint height",
minimum=4,
maximum=1024,
step=4,
value=512,
visible=True,
)
with gr.Row():
w.ad_cfg_scale = gr.Slider(
label="ADetailer CFG scale",
minimum=0.0,
maximum=30.0,
step=0.5,
value=7.0,
visible=True,
)
cn_inpaint_models = ["None"] + get_cn_inpaint_models()
with gr.Group():
with gr.Row():
w.ad_controlnet_model = gr.Dropdown(
label="ControlNet model",
choices=cn_inpaint_models,
value="None",
visible=True,
type="value",
interactive=controlnet_exists,
)
with gr.Row():
w.ad_controlnet_weight = gr.Slider(
label="ControlNet weight",
minimum=0.0,
maximum=1.0,
step=0.05,
value=1.0,
visible=True,
interactive=controlnet_exists,
)
self.infotext_fields = [(getattr(w, attr), name) for attr, name, *_ in ALL_ARGS]
return w.tolist()
def init_controlnet_ext(self):
if self.controlnet_ext is None:
self.controlnet_ext = ControlNetExt()
success = self.controlnet_ext.init_controlnet()
if not success:
print("[-] ADetailer: ControlNetExt init failed.", file=sys.stderr)
def is_ad_enabled(self, args: ADetailerArgs):
return args.ad_enable is True and args.ad_model != "None"
def extra_params(self, args: ADetailerArgs):
params = {name: getattr(args, attr) for attr, name, *_ in ALL_ARGS[1:]}
params["ADetailer conf"] = int(params["ADetailer conf"] * 100)
params["ADetailer version"] = __version__
if not params["ADetailer prompt"]:
params.pop("ADetailer prompt")
if not params["ADetailer negative prompt"]:
params.pop("ADetailer negative prompt")
if not params["ADetailer use inpaint width/height"]:
params.pop("ADetailer inpaint width")
params.pop("ADetailer inpaint height")
if params["ADetailer ControlNet model"] == "None":
params.pop("ADetailer ControlNet model")
params.pop("ADetailer ControlNet weight")
return params
@staticmethod
def get_args(*args):
return ADetailerArgs(*args)
@staticmethod
def get_ultralytics_device():
'`device = ""` means autodetect'
device = ""
if platform.system() == "Darwin":
return device
if any(getattr(cmd_opts, vram, False) for vram in ["lowvram", "medvram"]):
device = "cpu"
return device
def get_prompt(self, p, args: ADetailerArgs):
i = p._idx
if args.ad_prompt:
prompt = args.ad_prompt
elif not p.all_prompts:
prompt = p.prompt
elif i < len(p.all_prompts):
prompt = p.all_prompts[i]
else:
j = i % len(p.all_prompts)
prompt = p.all_prompts[j]
if args.ad_negative_prompt:
negative_prompt = args.ad_negative_prompt
elif not p.all_negative_prompts:
negative_prompt = p.negative_prompt
elif i < len(p.all_negative_prompts):
negative_prompt = p.all_negative_prompts[i]
else:
j = i % len(p.all_negative_prompts)
negative_prompt = p.all_negative_prompts[j]
return prompt, negative_prompt
def get_seed(self, p):
i = p._idx
if not p.all_seeds:
seed = p.seed
elif i < len(p.all_seeds):
seed = p.all_seeds[i]
else:
j = i % len(p.all_seeds)
seed = p.all_seeds[j]
if not p.all_subseeds:
subseed = p.subseed
elif i < len(p.all_subseeds):
subseed = p.all_subseeds[i]
else:
j = i % len(p.all_subseeds)
subseed = p.all_subseeds[j]
return seed, subseed
def get_width_height(self, p, args: ADetailerArgs):
if args.ad_use_inpaint_width_height:
width = args.ad_inpaint_width
height = args.ad_inpaint_height
else:
width = p.width
height = p.height
return width, height
def infotext(self, p):
return create_infotext(
p, p.all_prompts, p.all_seeds, p.all_subseeds, None, 0, 0
)
def write_params_txt(self, p):
infotext = self.infotext(p)
params_txt = Path(data_path, "params.txt")
params_txt.write_text(infotext, encoding="utf-8")
def get_i2i_p(self, p, args: ADetailerArgs, image):
prompt, negative_prompt = self.get_prompt(p, args)
seed, subseed = self.get_seed(p)
width, height = self.get_width_height(p, args)
sampler_name = p.sampler_name
if sampler_name in ["PLMS", "UniPC"]:
sampler_name = "Euler"
self.init_controlnet_ext()
i2i = StableDiffusionProcessingImg2Img(
init_images=[image],
resize_mode=0,
denoising_strength=args.ad_denoising_strength,
mask=None,
mask_blur=args.ad_mask_blur,
inpainting_fill=1,
inpaint_full_res=args.ad_inpaint_full_res,
inpaint_full_res_padding=args.ad_inpaint_full_res_padding,
inpainting_mask_invert=0,
sd_model=p.sd_model,
outpath_samples=p.outpath_samples,
outpath_grids=p.outpath_grids,
prompt=prompt,
negative_prompt=negative_prompt,
styles=p.styles,
seed=seed,
subseed=subseed,
subseed_strength=p.subseed_strength,
seed_resize_from_h=p.seed_resize_from_h,
seed_resize_from_w=p.seed_resize_from_w,
sampler_name=sampler_name,
batch_size=1,
n_iter=1,
steps=p.steps,
cfg_scale=args.ad_cfg_scale,
width=width,
height=height,
tiling=p.tiling,
extra_generation_params=p.extra_generation_params,
do_not_save_samples=True,
do_not_save_grid=True,
)
i2i.scripts = copy(p.scripts)
i2i.script_args = copy(p.script_args)
i2i._disable_adetailer = True
self.update_controlnet_args(i2i, args)
return i2i
def get_ad_model(self, name: str):
if name not in model_mapping:
msg = f"[-] ADetailer: Model {name!r} not found. Available models: {list(model_mapping.keys())}"
raise ValueError(msg)
return model_mapping[name]
def update_controlnet_args(self, p, args: ADetailerArgs):
if (
self.controlnet_ext is not None
and self.controlnet_ext.cn_available
and args.ad_controlnet_model != "None"
):
self.controlnet_ext.update_scripts_args(
p, args.ad_controlnet_model, args.ad_controlnet_weight
)
def process(self, p, *args_):
args = self.get_args(*args_)
if self.is_ad_enabled(args):
extra_params = self.extra_params(args)
p.extra_generation_params.update(extra_params)
def postprocess_image(self, p, pp, *args_):
if getattr(p, "_disable_adetailer", False):
return
args = self.get_args(*args_)
if not self.is_ad_enabled(args):
return
p._idx = getattr(p, "_idx", -1) + 1
i = p._idx
i2i = self.get_i2i_p(p, args, pp.image)
seed, subseed = self.get_seed(p)
is_mediapipe = args.ad_model.lower().startswith("mediapipe")
kwargs = {}
if is_mediapipe:
predictor = mediapipe_predict
ad_model = args.ad_model
else:
predictor = ultralytics_predict
ad_model = self.get_ad_model(args.ad_model)
kwargs["device"] = self.ultralytics_device
with ChangeTorchLoad():
pred = predictor(ad_model, pp.image, args.ad_conf, **kwargs)
if pred.masks is None:
print(
f"[-] ADetailer: nothing detected on image {i + 1} with current settings."
)
return
if opts.data.get("ad_save_previews", False):
images.save_image(
image=pred.preview,
path=p.outpath_samples,
basename="",
seed=seed,
prompt=p.all_prompts[i],
extension=opts.samples_format,
info=self.infotext(p),
p=p,
suffix="-ad-preview",
)
masks = pred.masks
steps = len(masks)
processed = None
if is_mediapipe:
print(f"mediapipe: {steps} detected.")
p2 = copy(i2i)
for j in range(steps):
mask = masks[j]
mask = dilate_erode(mask, args.ad_dilate_erode)
if not is_all_black(mask):
mask = offset(mask, args.ad_x_offset, args.ad_y_offset)
p2.image_mask = mask
processed = process_images(p2)
p2 = copy(i2i)
p2.init_images = [processed.images[0]]
p2.seed = seed + j + 1
p2.subseed = subseed + j + 1
if processed is not None:
pp.image = processed.images[0]
try:
if i == len(p.all_prompts) - 1:
self.write_params_txt(p)
except Exception:
pass
def on_ui_settings():
section = ("ADetailer", AFTER_DETAILER)
shared.opts.add_option(
"ad_save_previews",
shared.OptionInfo(False, "Save mask previews", section=section),
)
script_callbacks.on_ui_settings(on_ui_settings)