mirror of
https://github.com/Bing-su/adetailer.git
synced 2026-01-26 11:19:53 +00:00
593 lines
19 KiB
Python
593 lines
19 KiB
Python
from __future__ import annotations
|
|
|
|
import platform
|
|
import sys
|
|
from copy import copy
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import gradio as gr
|
|
import torch
|
|
|
|
import modules # noqa: F401
|
|
from adetailer import __version__, get_models, mediapipe_predict, ultralytics_predict
|
|
from adetailer.common import dilate_erode, is_all_black, offset
|
|
from controlnet_ext import ControlNetExt, controlnet_exists, get_cn_inpaint_models
|
|
from modules import images, safe, script_callbacks, scripts, shared
|
|
from modules.paths import data_path, models_path
|
|
from modules.processing import (
|
|
StableDiffusionProcessingImg2Img,
|
|
create_infotext,
|
|
process_images,
|
|
)
|
|
from modules.shared import cmd_opts, opts
|
|
|
|
try:
|
|
from rich import print
|
|
from rich.traceback import install
|
|
|
|
install(show_locals=True)
|
|
except Exception:
|
|
pass
|
|
|
|
AFTER_DETAILER = "After Detailer"
|
|
adetailer_dir = Path(models_path, "adetailer")
|
|
model_mapping = get_models(adetailer_dir)
|
|
|
|
print(
|
|
f"[-] ADetailer initialized. version: {__version__}, num models: {len(model_mapping)}"
|
|
)
|
|
|
|
ALL_ARGS = [
|
|
("ad_enable", "ADetailer enable", bool),
|
|
("ad_model", "ADetailer model", str),
|
|
("ad_prompt", "ADetailer prompt", str),
|
|
("ad_negative_prompt", "ADetailer negative prompt", str),
|
|
("ad_conf", "ADetailer conf", int),
|
|
("ad_dilate_erode", "ADetailer dilate/erode", int),
|
|
("ad_x_offset", "ADetailer x offset", int),
|
|
("ad_y_offset", "ADetailer y offset", int),
|
|
("ad_mask_blur", "ADetailer mask blur", int),
|
|
("ad_denoising_strength", "ADetailer denoising strength", float),
|
|
("ad_inpaint_full_res", "ADetailer inpaint full", bool),
|
|
("ad_inpaint_full_res_padding", "ADetailer inpaint padding", int),
|
|
("ad_use_inpaint_width_height", "ADetailer use inpaint width/height", bool),
|
|
("ad_inpaint_width", "ADetailer inpaint width", int),
|
|
("ad_inpaint_height", "ADetailer inpaint height", int),
|
|
("ad_cfg_scale", "ADetailer CFG scale", float),
|
|
("ad_controlnet_model", "ADetailer ControlNet model", str),
|
|
("ad_controlnet_weight", "ADetailer ControlNet weight", float),
|
|
]
|
|
|
|
|
|
class ADetailerArgs:
|
|
ad_enable: bool
|
|
ad_model: str
|
|
ad_prompt: str
|
|
ad_negative_prompt: str
|
|
ad_conf: float
|
|
ad_dilate_erode: int
|
|
ad_x_offset: int
|
|
ad_y_offset: int
|
|
ad_mask_blur: int
|
|
ad_denoising_strength: float
|
|
ad_inpaint_full_res: bool
|
|
ad_inpaint_full_res_padding: int
|
|
ad_use_inpaint_width_height: bool
|
|
ad_inpaint_width: int
|
|
ad_inpaint_height: int
|
|
ad_cfg_scale: float
|
|
ad_controlnet_model: str
|
|
ad_controlnet_weight: float
|
|
|
|
def __init__(self, *args):
|
|
args = self.ensure_dtype(args)
|
|
for i, (attr, *_) in enumerate(ALL_ARGS):
|
|
if attr == "ad_conf":
|
|
setattr(self, attr, args[i] / 100.0)
|
|
else:
|
|
setattr(self, attr, args[i])
|
|
|
|
def asdict(self):
|
|
return self.__dict__
|
|
|
|
def ensure_dtype(self, args):
|
|
args = list(args)
|
|
for i, (attr, _, dtype) in enumerate(ALL_ARGS):
|
|
if not isinstance(args[i], dtype):
|
|
try:
|
|
if dtype is bool:
|
|
args[i] = self.is_true(args[i])
|
|
else:
|
|
args[i] = dtype(args[i])
|
|
except ValueError as e:
|
|
msg = f"Error converting {args[i]!r}({attr}) to {dtype}: {e}"
|
|
raise ValueError(msg) from e
|
|
return args
|
|
|
|
def is_true(self, value: Any):
|
|
if isinstance(value, bool):
|
|
return value
|
|
return str(value).lower() == "true"
|
|
|
|
|
|
class Widgets:
|
|
def tolist(self):
|
|
return [getattr(self, attr) for attr, *_ in ALL_ARGS]
|
|
|
|
|
|
class ChangeTorchLoad:
|
|
def __enter__(self):
|
|
self.orig = torch.load
|
|
torch.load = safe.unsafe_torch_load
|
|
|
|
def __exit__(self, *args, **kwargs):
|
|
torch.load = self.orig
|
|
|
|
|
|
def gr_show(visible=True):
|
|
return {"visible": visible, "__type__": "update"}
|
|
|
|
|
|
class AfterDetailerScript(scripts.Script):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.controlnet_ext = None
|
|
self.ultralytics_device = self.get_ultralytics_device()
|
|
|
|
def title(self):
|
|
return AFTER_DETAILER
|
|
|
|
def show(self, is_img2img):
|
|
return scripts.AlwaysVisible
|
|
|
|
def ui(self, is_img2img):
|
|
model_list = ["None"] + list(model_mapping.keys())
|
|
|
|
w = Widgets()
|
|
|
|
with gr.Accordion(AFTER_DETAILER, open=False, elem_id="AD_main_acc"):
|
|
with gr.Row():
|
|
w.ad_enable = gr.Checkbox(
|
|
label="Enable ADetailer",
|
|
value=True,
|
|
visible=True,
|
|
)
|
|
|
|
with gr.Group():
|
|
with gr.Row():
|
|
w.ad_model = gr.Dropdown(
|
|
label="ADetailer model",
|
|
choices=model_list,
|
|
value=model_list[0],
|
|
visible=True,
|
|
type="value",
|
|
)
|
|
|
|
with gr.Row():
|
|
w.ad_prompt = gr.Textbox(
|
|
label="ad_prompt",
|
|
show_label=False,
|
|
lines=3,
|
|
placeholder="ADetailer prompt",
|
|
)
|
|
|
|
with gr.Row():
|
|
w.ad_negative_prompt = gr.Textbox(
|
|
label="ad_negative_prompt",
|
|
show_label=False,
|
|
lines=2,
|
|
placeholder="ADetailer negative prompt",
|
|
)
|
|
|
|
with gr.Group():
|
|
with gr.Row():
|
|
w.ad_conf = gr.Slider(
|
|
label="ADetailer confidence threshold %",
|
|
minimum=0,
|
|
maximum=100,
|
|
step=1,
|
|
value=30,
|
|
visible=True,
|
|
)
|
|
w.ad_dilate_erode = gr.Slider(
|
|
label="ADetailer erosion (-) / dilation (+)",
|
|
minimum=-128,
|
|
maximum=128,
|
|
step=4,
|
|
value=32,
|
|
visible=True,
|
|
)
|
|
|
|
with gr.Row():
|
|
w.ad_x_offset = gr.Slider(
|
|
label="ADetailer x(→) offset",
|
|
minimum=-200,
|
|
maximum=200,
|
|
step=1,
|
|
value=0,
|
|
visible=True,
|
|
)
|
|
w.ad_y_offset = gr.Slider(
|
|
label="ADetailer y(↑) offset",
|
|
minimum=-200,
|
|
maximum=200,
|
|
step=1,
|
|
value=0,
|
|
visible=True,
|
|
)
|
|
|
|
with gr.Row():
|
|
w.ad_mask_blur = gr.Slider(
|
|
label="ADetailer mask blur",
|
|
minimum=0,
|
|
maximum=64,
|
|
step=1,
|
|
value=4,
|
|
visible=True,
|
|
)
|
|
|
|
w.ad_denoising_strength = gr.Slider(
|
|
label="ADetailer denoising strength",
|
|
minimum=0.0,
|
|
maximum=1.0,
|
|
step=0.01,
|
|
value=0.4,
|
|
visible=True,
|
|
)
|
|
|
|
with gr.Row():
|
|
w.ad_inpaint_full_res = gr.Checkbox(
|
|
label="Inpaint at full resolution ",
|
|
value=True,
|
|
visible=True,
|
|
)
|
|
w.ad_inpaint_full_res_padding = gr.Slider(
|
|
label="Inpaint at full resolution padding, pixels ",
|
|
minimum=0,
|
|
maximum=256,
|
|
step=4,
|
|
value=0,
|
|
visible=True,
|
|
)
|
|
|
|
with gr.Row():
|
|
w.ad_use_inpaint_width_height = gr.Checkbox(
|
|
label="Use inpaint width/height",
|
|
value=False,
|
|
visible=True,
|
|
)
|
|
|
|
w.ad_inpaint_width = gr.Slider(
|
|
label="inpaint width",
|
|
minimum=4,
|
|
maximum=1024,
|
|
step=4,
|
|
value=512,
|
|
visible=True,
|
|
)
|
|
|
|
w.ad_inpaint_height = gr.Slider(
|
|
label="inpaint height",
|
|
minimum=4,
|
|
maximum=1024,
|
|
step=4,
|
|
value=512,
|
|
visible=True,
|
|
)
|
|
|
|
with gr.Row():
|
|
w.ad_cfg_scale = gr.Slider(
|
|
label="ADetailer CFG scale",
|
|
minimum=0.0,
|
|
maximum=30.0,
|
|
step=0.5,
|
|
value=7.0,
|
|
visible=True,
|
|
)
|
|
|
|
cn_inpaint_models = ["None"] + get_cn_inpaint_models()
|
|
|
|
with gr.Group():
|
|
with gr.Row():
|
|
w.ad_controlnet_model = gr.Dropdown(
|
|
label="ControlNet model",
|
|
choices=cn_inpaint_models,
|
|
value="None",
|
|
visible=True,
|
|
type="value",
|
|
interactive=controlnet_exists,
|
|
)
|
|
|
|
with gr.Row():
|
|
w.ad_controlnet_weight = gr.Slider(
|
|
label="ControlNet weight",
|
|
minimum=0.0,
|
|
maximum=1.0,
|
|
step=0.05,
|
|
value=1.0,
|
|
visible=True,
|
|
interactive=controlnet_exists,
|
|
)
|
|
|
|
self.infotext_fields = [(getattr(w, attr), name) for attr, name, *_ in ALL_ARGS]
|
|
|
|
return w.tolist()
|
|
|
|
def init_controlnet_ext(self):
|
|
if self.controlnet_ext is None:
|
|
self.controlnet_ext = ControlNetExt()
|
|
success = self.controlnet_ext.init_controlnet()
|
|
if not success:
|
|
print("[-] ADetailer: ControlNetExt init failed.", file=sys.stderr)
|
|
|
|
def is_ad_enabled(self, args: ADetailerArgs):
|
|
return args.ad_enable is True and args.ad_model != "None"
|
|
|
|
def extra_params(self, args: ADetailerArgs):
|
|
params = {name: getattr(args, attr) for attr, name, *_ in ALL_ARGS[1:]}
|
|
params["ADetailer conf"] = int(params["ADetailer conf"] * 100)
|
|
params["ADetailer version"] = __version__
|
|
|
|
if not params["ADetailer prompt"]:
|
|
params.pop("ADetailer prompt")
|
|
if not params["ADetailer negative prompt"]:
|
|
params.pop("ADetailer negative prompt")
|
|
|
|
if not params["ADetailer use inpaint width/height"]:
|
|
params.pop("ADetailer inpaint width")
|
|
params.pop("ADetailer inpaint height")
|
|
|
|
if params["ADetailer ControlNet model"] == "None":
|
|
params.pop("ADetailer ControlNet model")
|
|
params.pop("ADetailer ControlNet weight")
|
|
|
|
return params
|
|
|
|
@staticmethod
|
|
def get_args(*args):
|
|
return ADetailerArgs(*args)
|
|
|
|
@staticmethod
|
|
def get_ultralytics_device():
|
|
'`device = ""` means autodetect'
|
|
device = ""
|
|
if platform.system() == "Darwin":
|
|
return device
|
|
|
|
if any(getattr(cmd_opts, vram, False) for vram in ["lowvram", "medvram"]):
|
|
device = "cpu"
|
|
|
|
return device
|
|
|
|
def get_prompt(self, p, args: ADetailerArgs):
|
|
i = p._idx
|
|
|
|
if args.ad_prompt:
|
|
prompt = args.ad_prompt
|
|
elif not p.all_prompts:
|
|
prompt = p.prompt
|
|
elif i < len(p.all_prompts):
|
|
prompt = p.all_prompts[i]
|
|
else:
|
|
j = i % len(p.all_prompts)
|
|
prompt = p.all_prompts[j]
|
|
|
|
if args.ad_negative_prompt:
|
|
negative_prompt = args.ad_negative_prompt
|
|
elif not p.all_negative_prompts:
|
|
negative_prompt = p.negative_prompt
|
|
elif i < len(p.all_negative_prompts):
|
|
negative_prompt = p.all_negative_prompts[i]
|
|
else:
|
|
j = i % len(p.all_negative_prompts)
|
|
negative_prompt = p.all_negative_prompts[j]
|
|
|
|
return prompt, negative_prompt
|
|
|
|
def get_seed(self, p):
|
|
i = p._idx
|
|
|
|
if not p.all_seeds:
|
|
seed = p.seed
|
|
elif i < len(p.all_seeds):
|
|
seed = p.all_seeds[i]
|
|
else:
|
|
j = i % len(p.all_seeds)
|
|
seed = p.all_seeds[j]
|
|
|
|
if not p.all_subseeds:
|
|
subseed = p.subseed
|
|
elif i < len(p.all_subseeds):
|
|
subseed = p.all_subseeds[i]
|
|
else:
|
|
j = i % len(p.all_subseeds)
|
|
subseed = p.all_subseeds[j]
|
|
|
|
return seed, subseed
|
|
|
|
def get_width_height(self, p, args: ADetailerArgs):
|
|
if args.ad_use_inpaint_width_height:
|
|
width = args.ad_inpaint_width
|
|
height = args.ad_inpaint_height
|
|
else:
|
|
width = p.width
|
|
height = p.height
|
|
|
|
return width, height
|
|
|
|
def infotext(self, p):
|
|
return create_infotext(
|
|
p, p.all_prompts, p.all_seeds, p.all_subseeds, None, 0, 0
|
|
)
|
|
|
|
def write_params_txt(self, p):
|
|
infotext = self.infotext(p)
|
|
params_txt = Path(data_path, "params.txt")
|
|
params_txt.write_text(infotext, encoding="utf-8")
|
|
|
|
def get_i2i_p(self, p, args: ADetailerArgs, image):
|
|
prompt, negative_prompt = self.get_prompt(p, args)
|
|
seed, subseed = self.get_seed(p)
|
|
width, height = self.get_width_height(p, args)
|
|
|
|
sampler_name = p.sampler_name
|
|
if sampler_name in ["PLMS", "UniPC"]:
|
|
sampler_name = "Euler"
|
|
|
|
self.init_controlnet_ext()
|
|
|
|
i2i = StableDiffusionProcessingImg2Img(
|
|
init_images=[image],
|
|
resize_mode=0,
|
|
denoising_strength=args.ad_denoising_strength,
|
|
mask=None,
|
|
mask_blur=args.ad_mask_blur,
|
|
inpainting_fill=1,
|
|
inpaint_full_res=args.ad_inpaint_full_res,
|
|
inpaint_full_res_padding=args.ad_inpaint_full_res_padding,
|
|
inpainting_mask_invert=0,
|
|
sd_model=p.sd_model,
|
|
outpath_samples=p.outpath_samples,
|
|
outpath_grids=p.outpath_grids,
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
styles=p.styles,
|
|
seed=seed,
|
|
subseed=subseed,
|
|
subseed_strength=p.subseed_strength,
|
|
seed_resize_from_h=p.seed_resize_from_h,
|
|
seed_resize_from_w=p.seed_resize_from_w,
|
|
sampler_name=sampler_name,
|
|
batch_size=1,
|
|
n_iter=1,
|
|
steps=p.steps,
|
|
cfg_scale=args.ad_cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
tiling=p.tiling,
|
|
extra_generation_params=p.extra_generation_params,
|
|
do_not_save_samples=True,
|
|
do_not_save_grid=True,
|
|
)
|
|
|
|
i2i.scripts = copy(p.scripts)
|
|
i2i.script_args = copy(p.script_args)
|
|
i2i._disable_adetailer = True
|
|
|
|
self.update_controlnet_args(i2i, args)
|
|
return i2i
|
|
|
|
def get_ad_model(self, name: str):
|
|
if name not in model_mapping:
|
|
msg = f"[-] ADetailer: Model {name!r} not found. Available models: {list(model_mapping.keys())}"
|
|
raise ValueError(msg)
|
|
return model_mapping[name]
|
|
|
|
def update_controlnet_args(self, p, args: ADetailerArgs):
|
|
if (
|
|
self.controlnet_ext is not None
|
|
and self.controlnet_ext.cn_available
|
|
and args.ad_controlnet_model != "None"
|
|
):
|
|
self.controlnet_ext.update_scripts_args(
|
|
p, args.ad_controlnet_model, args.ad_controlnet_weight
|
|
)
|
|
|
|
def process(self, p, *args_):
|
|
args = self.get_args(*args_)
|
|
if self.is_ad_enabled(args):
|
|
extra_params = self.extra_params(args)
|
|
p.extra_generation_params.update(extra_params)
|
|
|
|
def postprocess_image(self, p, pp, *args_):
|
|
if getattr(p, "_disable_adetailer", False):
|
|
return
|
|
|
|
args = self.get_args(*args_)
|
|
|
|
if not self.is_ad_enabled(args):
|
|
return
|
|
|
|
p._idx = getattr(p, "_idx", -1) + 1
|
|
i = p._idx
|
|
|
|
i2i = self.get_i2i_p(p, args, pp.image)
|
|
seed, subseed = self.get_seed(p)
|
|
|
|
is_mediapipe = args.ad_model.lower().startswith("mediapipe")
|
|
|
|
kwargs = {}
|
|
if is_mediapipe:
|
|
predictor = mediapipe_predict
|
|
ad_model = args.ad_model
|
|
else:
|
|
predictor = ultralytics_predict
|
|
ad_model = self.get_ad_model(args.ad_model)
|
|
kwargs["device"] = self.ultralytics_device
|
|
|
|
with ChangeTorchLoad():
|
|
pred = predictor(ad_model, pp.image, args.ad_conf, **kwargs)
|
|
|
|
if pred.masks is None:
|
|
print(
|
|
f"[-] ADetailer: nothing detected on image {i + 1} with current settings."
|
|
)
|
|
return
|
|
|
|
if opts.data.get("ad_save_previews", False):
|
|
images.save_image(
|
|
image=pred.preview,
|
|
path=p.outpath_samples,
|
|
basename="",
|
|
seed=seed,
|
|
prompt=p.all_prompts[i],
|
|
extension=opts.samples_format,
|
|
info=self.infotext(p),
|
|
p=p,
|
|
suffix="-ad-preview",
|
|
)
|
|
|
|
masks = pred.masks
|
|
steps = len(masks)
|
|
processed = None
|
|
|
|
if is_mediapipe:
|
|
print(f"mediapipe: {steps} detected.")
|
|
|
|
p2 = copy(i2i)
|
|
for j in range(steps):
|
|
mask = masks[j]
|
|
mask = dilate_erode(mask, args.ad_dilate_erode)
|
|
|
|
if not is_all_black(mask):
|
|
mask = offset(mask, args.ad_x_offset, args.ad_y_offset)
|
|
p2.image_mask = mask
|
|
processed = process_images(p2)
|
|
|
|
p2 = copy(i2i)
|
|
p2.init_images = [processed.images[0]]
|
|
|
|
p2.seed = seed + j + 1
|
|
p2.subseed = subseed + j + 1
|
|
|
|
if processed is not None:
|
|
pp.image = processed.images[0]
|
|
|
|
try:
|
|
if i == len(p.all_prompts) - 1:
|
|
self.write_params_txt(p)
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def on_ui_settings():
|
|
section = ("ADetailer", AFTER_DETAILER)
|
|
shared.opts.add_option(
|
|
"ad_save_previews",
|
|
shared.OptionInfo(False, "Save mask previews", section=section),
|
|
)
|
|
|
|
|
|
script_callbacks.on_ui_settings(on_ui_settings)
|