Files
adetailer/adetailer/mask.py
Collin Avidano 9ceb58685a Feature: Filter k most confident masks (#720)
* add filter to things that return confidences need to add ui elements to select between the two methods

* add ui elements for controlling method

* forgot to remove this

* fix incorrect early exit

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix: pop mask only top k params

* fix: filter confidences

* refactor: change to one public function

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Dowon <ks2515@naver.com>
2024-09-25 20:12:28 +09:00

293 lines
7.4 KiB
Python

from __future__ import annotations
from enum import IntEnum
from functools import partial, reduce
from math import dist
from typing import Any, TypeVar
import cv2
import numpy as np
from PIL import Image, ImageChops
from adetailer.args import MASK_MERGE_INVERT
from adetailer.common import PredictOutput, ensure_pil_image
class SortBy(IntEnum):
NONE = 0
LEFT_TO_RIGHT = 1
CENTER_TO_EDGE = 2
AREA = 3
class MergeInvert(IntEnum):
NONE = 0
MERGE = 1
MERGE_INVERT = 2
T = TypeVar("T", int, float)
def _dilate(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.dilate(arr, kernel, iterations=1)
def _erode(arr: np.ndarray, value: int) -> np.ndarray:
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
return cv2.erode(arr, kernel, iterations=1)
def dilate_erode(img: Image.Image, value: int) -> Image.Image:
"""
The dilate_erode function takes an image and a value.
If the value is positive, it dilates the image by that amount.
If the value is negative, it erodes the image by that amount.
Parameters
----------
img: PIL.Image.Image
the image to be processed
value: int
kernel size of dilation or erosion
Returns
-------
PIL.Image.Image
The image that has been dilated or eroded
"""
if value == 0:
return img
arr = np.array(img)
arr = _dilate(arr, value) if value > 0 else _erode(arr, -value)
return Image.fromarray(arr)
def offset(img: Image.Image, x: int = 0, y: int = 0) -> Image.Image:
"""
The offset function takes an image and offsets it by a given x(→) and y(↑) value.
Parameters
----------
mask: Image.Image
Pass the mask image to the function
x: int
y: int
Returns
-------
PIL.Image.Image
A new image that is offset by x and y
"""
return ImageChops.offset(img, x, -y)
def is_all_black(img: Image.Image | np.ndarray) -> bool:
if isinstance(img, Image.Image):
img = np.array(ensure_pil_image(img, "L"))
return cv2.countNonZero(img) == 0
def has_intersection(im1: Any, im2: Any) -> bool:
arr1 = np.array(ensure_pil_image(im1, "L"))
arr2 = np.array(ensure_pil_image(im2, "L"))
return not is_all_black(cv2.bitwise_and(arr1, arr2))
def bbox_area(bbox: list[T]) -> T:
return (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
def mask_preprocess(
masks: list[Image.Image],
kernel: int = 0,
x_offset: int = 0,
y_offset: int = 0,
merge_invert: int | MergeInvert | str = MergeInvert.NONE,
) -> list[Image.Image]:
"""
The mask_preprocess function takes a list of masks and preprocesses them.
It dilates and erodes the masks, and offsets them by x_offset and y_offset.
Parameters
----------
masks: list[Image.Image]
A list of masks
kernel: int
kernel size of dilation or erosion
x_offset: int
y_offset: int
Returns
-------
list[Image.Image]
A list of processed masks
"""
if not masks:
return []
if x_offset != 0 or y_offset != 0:
masks = [offset(m, x_offset, y_offset) for m in masks]
if kernel != 0:
masks = [dilate_erode(m, kernel) for m in masks]
masks = [m for m in masks if not is_all_black(m)]
return mask_merge_invert(masks, mode=merge_invert)
# Bbox sorting
def _key_left_to_right(bbox: list[T]) -> T:
"""
Left to right
Parameters
----------
bbox: list[int] | list[float]
list of [x1, y1, x2, y2]
"""
return bbox[0]
def _key_center_to_edge(bbox: list[T], *, center: tuple[float, float]) -> float:
"""
Center to edge
Parameters
----------
bbox: list[int] | list[float]
list of [x1, y1, x2, y2]
image: Image.Image
the image
"""
bbox_center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2)
return dist(center, bbox_center)
def _key_area(bbox: list[T]) -> T:
"""
Large to small
Parameters
----------
bbox: list[int] | list[float]
list of [x1, y1, x2, y2]
"""
return -bbox_area(bbox)
def sort_bboxes(
pred: PredictOutput[T], order: int | SortBy = SortBy.NONE
) -> PredictOutput[T]:
if order == SortBy.NONE or len(pred.bboxes) <= 1:
return pred
if order == SortBy.LEFT_TO_RIGHT:
key = _key_left_to_right
elif order == SortBy.CENTER_TO_EDGE:
width, height = pred.preview.size
center = (width / 2, height / 2)
key = partial(_key_center_to_edge, center=center)
elif order == SortBy.AREA:
key = _key_area
else:
raise RuntimeError
items = len(pred.bboxes)
idx = sorted(range(items), key=lambda i: key(pred.bboxes[i]))
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
return pred
# Filter by ratio
def is_in_ratio(bbox: list[T], low: float, high: float, orig_area: int) -> bool:
area = bbox_area(bbox)
return low <= area / orig_area <= high
def filter_by_ratio(
pred: PredictOutput[T], low: float, high: float
) -> PredictOutput[T]:
if not pred.bboxes:
return pred
w, h = pred.preview.size
orig_area = w * h
items = len(pred.bboxes)
idx = [i for i in range(items) if is_in_ratio(pred.bboxes[i], low, high, orig_area)]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
pred.confidences = [pred.confidences[i] for i in idx]
return pred
def filter_k_largest(pred: PredictOutput[T], k: int = 0) -> PredictOutput[T]:
if not pred.bboxes or k == 0:
return pred
areas = [bbox_area(bbox) for bbox in pred.bboxes]
idx = np.argsort(areas)[-k:]
idx = idx[::-1]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
pred.confidences = [pred.confidences[i] for i in idx]
return pred
def filter_k_most_confident(pred: PredictOutput[T], k: int = 0) -> PredictOutput[T]:
if not pred.bboxes or not pred.confidences or k == 0:
return pred
idx = np.argsort(pred.confidences)[-k:]
idx = idx[::-1]
pred.bboxes = [pred.bboxes[i] for i in idx]
pred.masks = [pred.masks[i] for i in idx]
pred.confidences = [pred.confidences[i] for i in idx]
return pred
def filter_k_by(
pred: PredictOutput[T], k: int = 0, by: str = "Area"
) -> PredictOutput[T]:
if by == "Area":
return filter_k_largest(pred, k)
if by == "Confidence":
return filter_k_most_confident(pred, k)
raise RuntimeError
# Merge / Invert
def mask_merge(masks: list[Image.Image]) -> list[Image.Image]:
arrs = [np.array(m) for m in masks]
arr = reduce(cv2.bitwise_or, arrs)
return [Image.fromarray(arr)]
def mask_invert(masks: list[Image.Image]) -> list[Image.Image]:
return [ImageChops.invert(m) for m in masks]
def mask_merge_invert(
masks: list[Image.Image], mode: int | MergeInvert | str
) -> list[Image.Image]:
if isinstance(mode, str):
mode = MASK_MERGE_INVERT.index(mode)
if mode == MergeInvert.NONE or not masks:
return masks
if mode == MergeInvert.MERGE:
return mask_merge(masks)
if mode == MergeInvert.MERGE_INVERT:
merged = mask_merge(masks)
return mask_invert(merged)
raise RuntimeError