Files
adetailer/aaaaaa/ui.py
2024-05-19 15:54:38 +09:00

705 lines
23 KiB
Python

from __future__ import annotations
from dataclasses import dataclass
from functools import partial
from types import SimpleNamespace
from typing import Any
import gradio as gr
from adetailer import AFTER_DETAILER, __version__
from adetailer.args import ALL_ARGS, MASK_MERGE_INVERT
from controlnet_ext import controlnet_exists, controlnet_type, get_cn_models
if controlnet_type == "forge":
from lib_controlnet import global_state
cn_module_choices = {
"inpaint": list(global_state.get_filtered_preprocessors("Inpaint")),
"lineart": list(global_state.get_filtered_preprocessors("Lineart")),
"openpose": list(global_state.get_filtered_preprocessors("OpenPose")),
"tile": list(global_state.get_filtered_preprocessors("Tile")),
"scribble": list(global_state.get_filtered_preprocessors("Scribble")),
"depth": list(global_state.get_filtered_preprocessors("Depth")),
}
else:
cn_module_choices = {
"inpaint": [
"inpaint_global_harmonious",
"inpaint_only",
"inpaint_only+lama",
],
"lineart": [
"lineart_coarse",
"lineart_realistic",
"lineart_anime",
"lineart_anime_denoise",
],
"openpose": ["openpose_full", "dw_openpose_full"],
"tile": ["tile_resample", "tile_colorfix", "tile_colorfix+sharp"],
"scribble": ["t2ia_sketch_pidi"],
"depth": ["depth_midas", "depth_hand_refiner"],
}
class Widgets(SimpleNamespace):
def tolist(self):
return [getattr(self, attr) for attr in ALL_ARGS.attrs]
@dataclass
class WebuiInfo:
ad_model_list: list[str]
sampler_names: list[str]
scheduler_names: list[str]
t2i_button: gr.Button
i2i_button: gr.Button
checkpoints_list: list[str]
vae_list: list[str]
def gr_interactive(value: bool = True):
return gr.update(interactive=value)
def ordinal(n: int) -> str:
d = {1: "st", 2: "nd", 3: "rd"}
return str(n) + ("th" if 11 <= n % 100 <= 13 else d.get(n % 10, "th"))
def suffix(n: int, c: str = " ") -> str:
return "" if n == 0 else c + ordinal(n + 1)
def on_widget_change(state: dict, value: Any, *, attr: str):
if "is_api" in state:
state = state.copy()
state.pop("is_api")
state[attr] = value
return state
def on_generate_click(state: dict, *values: Any):
for attr, value in zip(ALL_ARGS.attrs, values):
state[attr] = value
state["is_api"] = ()
return state
def on_ad_model_update(model: str):
if "-world" in model:
return gr.update(
visible=True,
placeholder="Comma separated class names to detect, ex: 'person,cat'. default: COCO 80 classes",
)
return gr.update(visible=False, placeholder="")
def on_cn_model_update(cn_model_name: str):
cn_model_name = cn_model_name.replace("inpaint_depth", "depth")
for t in cn_module_choices:
if t in cn_model_name:
choices = cn_module_choices[t]
return gr.update(visible=True, choices=choices, value=choices[0])
return gr.update(visible=False, choices=["None"], value="None")
def elem_id(item_id: str, n: int, is_img2img: bool) -> str:
tap = "img2img" if is_img2img else "txt2img"
suf = suffix(n, "_")
return f"script_{tap}_adetailer_{item_id}{suf}"
def state_init(w: Widgets) -> dict[str, Any]:
return {attr: getattr(w, attr).value for attr in ALL_ARGS.attrs}
def adui(
num_models: int,
is_img2img: bool,
webui_info: WebuiInfo,
):
states = []
infotext_fields = []
eid = partial(elem_id, n=0, is_img2img=is_img2img)
with gr.Accordion(AFTER_DETAILER, open=False, elem_id=eid("ad_main_accordion")):
with gr.Row():
with gr.Column(scale=6):
ad_enable = gr.Checkbox(
label="Enable ADetailer",
value=False,
visible=True,
elem_id=eid("ad_enable"),
)
with gr.Column(scale=6):
ad_skip_img2img = gr.Checkbox(
label="Skip img2img",
value=False,
visible=is_img2img,
elem_id=eid("ad_skip_img2img"),
)
with gr.Column(scale=1, min_width=180):
gr.Markdown(
f"v{__version__}",
elem_id=eid("ad_version"),
)
infotext_fields.append((ad_enable, "ADetailer enable"))
infotext_fields.append((ad_skip_img2img, "ADetailer skip img2img"))
with gr.Group(), gr.Tabs():
for n in range(num_models):
with gr.Tab(ordinal(n + 1)):
state, infofields = one_ui_group(
n=n,
is_img2img=is_img2img,
webui_info=webui_info,
)
states.append(state)
infotext_fields.extend(infofields)
# components: [bool, dict, dict, ...]
components = [ad_enable, ad_skip_img2img, *states]
return components, infotext_fields
def one_ui_group(n: int, is_img2img: bool, webui_info: WebuiInfo):
w = Widgets()
eid = partial(elem_id, n=n, is_img2img=is_img2img)
with gr.Group():
with gr.Row():
model_choices = (
[*webui_info.ad_model_list, "None"]
if n == 0
else ["None", *webui_info.ad_model_list]
)
w.ad_model = gr.Dropdown(
label="ADetailer detector" + suffix(n),
choices=model_choices,
value=model_choices[0],
visible=True,
type="value",
elem_id=eid("ad_model"),
info="Select a model to use for detection.",
)
with gr.Row():
w.ad_model_classes = gr.Textbox(
label="ADetailer detector classes" + suffix(n),
value="",
visible=False,
elem_id=eid("ad_classes"),
info="Comma separated class names to detect, ex: 'girl,cat'.",
)
w.ad_model.change(
on_ad_model_update,
inputs=w.ad_model,
outputs=w.ad_model_classes,
queue=False,
)
gr.HTML("<br>")
with gr.Group():
with gr.Row(elem_id=eid("ad_toprow_prompt")):
w.ad_prompt = gr.Textbox(
label="ad_prompt" + suffix(n),
show_label=False,
lines=3,
placeholder="ADetailer prompt"
+ suffix(n)
+ "\nIf blank, the main prompt is used.",
elem_id=eid("ad_prompt"),
)
with gr.Row(elem_id=eid("ad_toprow_negative_prompt")):
w.ad_negative_prompt = gr.Textbox(
label="ad_negative_prompt" + suffix(n),
show_label=False,
lines=2,
placeholder="ADetailer negative prompt"
+ suffix(n)
+ "\nIf blank, the main negative prompt is used.",
elem_id=eid("ad_negative_prompt"),
)
with gr.Group():
with gr.Accordion(
"Detection", open=False, elem_id=eid("ad_detection_accordion")
):
detection(w, n, is_img2img)
with gr.Accordion(
"Mask Preprocessing",
open=False,
elem_id=eid("ad_mask_preprocessing_accordion"),
):
mask_preprocessing(w, n, is_img2img)
with gr.Accordion(
"Inpainting", open=False, elem_id=eid("ad_inpainting_accordion")
):
inpainting(w, n, is_img2img, webui_info)
with gr.Group():
controlnet(w, n, is_img2img)
state = gr.State(lambda: state_init(w))
for attr in ALL_ARGS.attrs:
widget = getattr(w, attr)
on_change = partial(on_widget_change, attr=attr)
widget.change(fn=on_change, inputs=[state, widget], outputs=state, queue=False)
all_inputs = [state, *w.tolist()]
target_button = webui_info.i2i_button if is_img2img else webui_info.t2i_button
target_button.click(
fn=on_generate_click, inputs=all_inputs, outputs=state, queue=False
)
infotext_fields = [(getattr(w, attr), name + suffix(n)) for attr, name in ALL_ARGS]
return state, infotext_fields
def detection(w: Widgets, n: int, is_img2img: bool):
eid = partial(elem_id, n=n, is_img2img=is_img2img)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_confidence = gr.Slider(
label="Detection model confidence threshold" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.3,
visible=True,
elem_id=eid("ad_confidence"),
info="Confidence threshold for detection model.",
)
w.ad_mask_k_largest = gr.Slider(
label="Mask only the top k largest (0 to disable)" + suffix(n),
minimum=0,
maximum=10,
step=1,
value=0,
visible=True,
elem_id=eid("ad_mask_k_largest"),
info="Use only the top k largest objects for masking.",
)
with gr.Column(variant="compact"):
w.ad_mask_min_ratio = gr.Slider(
label="Mask min area ratio" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.001,
value=0.0,
visible=True,
elem_id=eid("ad_mask_min_ratio"),
info="Minimum area ratio for masking.",
)
w.ad_mask_max_ratio = gr.Slider(
label="Mask max area ratio" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.001,
value=1.0,
visible=True,
elem_id=eid("ad_mask_max_ratio"),
info="Maximum area ratio for masking.",
)
def mask_preprocessing(w: Widgets, n: int, is_img2img: bool):
eid = partial(elem_id, n=n, is_img2img=is_img2img)
with gr.Group():
with gr.Row():
with gr.Column(variant="compact"):
w.ad_x_offset = gr.Slider(
label="Mask x(→) offset" + suffix(n),
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
elem_id=eid("ad_x_offset"),
info="Mask x offset (→) in pixels.",
)
w.ad_y_offset = gr.Slider(
label="Mask y(↑) offset" + suffix(n),
minimum=-200,
maximum=200,
step=1,
value=0,
visible=True,
elem_id=eid("ad_y_offset"),
info="Mask y offset (↑) in pixels.",
)
with gr.Column(variant="compact"):
w.ad_dilate_erode = gr.Slider(
label="Mask erosion (-) / dilation (+)" + suffix(n),
minimum=-128,
maximum=128,
step=4,
value=4,
visible=True,
elem_id=eid("ad_dilate_erode"),
info="Mask erosion (-) / dilation (+) in pixels.",
)
with gr.Row():
w.ad_mask_merge_invert = gr.Radio(
label="Mask merge mode" + suffix(n),
choices=MASK_MERGE_INVERT,
value="None",
elem_id=eid("ad_mask_merge_invert"),
info="Mask merge mode. (None: do nothing, Merge: merge masks, Merge and Invert: merge all masks and invert)",
)
def inpainting(w: Widgets, n: int, is_img2img: bool, webui_info: WebuiInfo):
eid = partial(elem_id, n=n, is_img2img=is_img2img)
with gr.Group():
with gr.Row():
w.ad_mask_blur = gr.Slider(
label="Inpaint mask blur" + suffix(n),
minimum=0,
maximum=64,
step=1,
value=4,
visible=True,
elem_id=eid("ad_mask_blur"),
)
w.ad_denoising_strength = gr.Slider(
label="Inpaint denoising strength" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.4,
visible=True,
elem_id=eid("ad_denoising_strength"),
)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_inpaint_only_masked = gr.Checkbox(
label="Inpaint only masked" + suffix(n),
value=True,
visible=True,
elem_id=eid("ad_inpaint_only_masked"),
)
w.ad_inpaint_only_masked_padding = gr.Slider(
label="Inpaint only masked padding, pixels" + suffix(n),
minimum=0,
maximum=256,
step=4,
value=32,
visible=True,
elem_id=eid("ad_inpaint_only_masked_padding"),
)
w.ad_inpaint_only_masked.change(
gr_interactive,
inputs=w.ad_inpaint_only_masked,
outputs=w.ad_inpaint_only_masked_padding,
queue=False,
)
with gr.Column(variant="compact"):
w.ad_use_inpaint_width_height = gr.Checkbox(
label="Use separate width/height" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_inpaint_width_height"),
)
w.ad_inpaint_width = gr.Slider(
label="inpaint width" + suffix(n),
minimum=64,
maximum=2048,
step=4,
value=512,
visible=True,
elem_id=eid("ad_inpaint_width"),
)
w.ad_inpaint_height = gr.Slider(
label="inpaint height" + suffix(n),
minimum=64,
maximum=2048,
step=4,
value=512,
visible=True,
elem_id=eid("ad_inpaint_height"),
)
w.ad_use_inpaint_width_height.change(
lambda value: (gr_interactive(value), gr_interactive(value)),
inputs=w.ad_use_inpaint_width_height,
outputs=[w.ad_inpaint_width, w.ad_inpaint_height],
queue=False,
)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_use_steps = gr.Checkbox(
label="Use separate steps" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_steps"),
)
w.ad_steps = gr.Slider(
label="ADetailer steps" + suffix(n),
minimum=1,
maximum=150,
step=1,
value=28,
visible=True,
elem_id=eid("ad_steps"),
)
w.ad_use_steps.change(
gr_interactive,
inputs=w.ad_use_steps,
outputs=w.ad_steps,
queue=False,
)
with gr.Column(variant="compact"):
w.ad_use_cfg_scale = gr.Checkbox(
label="Use separate CFG scale" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_cfg_scale"),
)
w.ad_cfg_scale = gr.Slider(
label="ADetailer CFG scale" + suffix(n),
minimum=0.0,
maximum=30.0,
step=0.5,
value=7.0,
visible=True,
elem_id=eid("ad_cfg_scale"),
)
w.ad_use_cfg_scale.change(
gr_interactive,
inputs=w.ad_use_cfg_scale,
outputs=w.ad_cfg_scale,
queue=False,
)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_use_checkpoint = gr.Checkbox(
label="Use separate checkpoint" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_checkpoint"),
)
ckpts = ["Use same checkpoint", *webui_info.checkpoints_list]
w.ad_checkpoint = gr.Dropdown(
label="ADetailer checkpoint" + suffix(n),
choices=ckpts,
value=ckpts[0],
visible=True,
elem_id=eid("ad_checkpoint"),
)
with gr.Column(variant="compact"):
w.ad_use_vae = gr.Checkbox(
label="Use separate VAE" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_vae"),
)
vaes = ["Use same VAE", *webui_info.vae_list]
w.ad_vae = gr.Dropdown(
label="ADetailer VAE" + suffix(n),
choices=vaes,
value=vaes[0],
visible=True,
elem_id=eid("ad_vae"),
)
with gr.Row(), gr.Column(variant="compact"):
w.ad_use_sampler = gr.Checkbox(
label="Use separate sampler" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_sampler"),
)
with gr.Row():
w.ad_sampler = gr.Dropdown(
label="ADetailer sampler" + suffix(n),
choices=webui_info.sampler_names,
value=webui_info.sampler_names[0],
visible=True,
elem_id=eid("ad_sampler"),
)
scheduler_names = [
"Use same scheduler",
*webui_info.scheduler_names,
]
w.ad_scheduler = gr.Dropdown(
label="ADetailer scheduler" + suffix(n),
choices=scheduler_names,
value=scheduler_names[0],
visible=len(scheduler_names) > 1,
elem_id=eid("ad_scheduler"),
)
w.ad_use_sampler.change(
lambda value: (gr_interactive(value), gr_interactive(value)),
inputs=w.ad_use_sampler,
outputs=[w.ad_sampler, w.ad_scheduler],
queue=False,
)
with gr.Row():
with gr.Column(variant="compact"):
w.ad_use_noise_multiplier = gr.Checkbox(
label="Use separate noise multiplier" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_noise_multiplier"),
)
w.ad_noise_multiplier = gr.Slider(
label="Noise multiplier for img2img" + suffix(n),
minimum=0.5,
maximum=1.5,
step=0.01,
value=1.0,
visible=True,
elem_id=eid("ad_noise_multiplier"),
)
w.ad_use_noise_multiplier.change(
gr_interactive,
inputs=w.ad_use_noise_multiplier,
outputs=w.ad_noise_multiplier,
queue=False,
)
with gr.Column(variant="compact"):
w.ad_use_clip_skip = gr.Checkbox(
label="Use separate CLIP skip" + suffix(n),
value=False,
visible=True,
elem_id=eid("ad_use_clip_skip"),
)
w.ad_clip_skip = gr.Slider(
label="ADetailer CLIP skip" + suffix(n),
minimum=1,
maximum=12,
step=1,
value=1,
visible=True,
elem_id=eid("ad_clip_skip"),
)
w.ad_use_clip_skip.change(
gr_interactive,
inputs=w.ad_use_clip_skip,
outputs=w.ad_clip_skip,
queue=False,
)
with gr.Row(), gr.Column(variant="compact"):
w.ad_restore_face = gr.Checkbox(
label="Restore faces after ADetailer" + suffix(n),
value=False,
elem_id=eid("ad_restore_face"),
info="Apply face restoration after ADetailer.",
)
def controlnet(w: Widgets, n: int, is_img2img: bool):
eid = partial(elem_id, n=n, is_img2img=is_img2img)
cn_models = ["None", "Passthrough", *get_cn_models()]
with gr.Row(variant="panel"):
with gr.Column(variant="compact"):
w.ad_controlnet_model = gr.Dropdown(
label="ControlNet model" + suffix(n),
choices=cn_models,
value="None",
visible=True,
type="value",
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_model"),
)
w.ad_controlnet_module = gr.Dropdown(
label="ControlNet module" + suffix(n),
choices=["None"],
value="None",
visible=False,
type="value",
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_module"),
)
w.ad_controlnet_weight = gr.Slider(
label="ControlNet weight" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
visible=True,
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_weight"),
)
w.ad_controlnet_model.change(
on_cn_model_update,
inputs=w.ad_controlnet_model,
outputs=w.ad_controlnet_module,
queue=False,
)
with gr.Column(variant="compact"):
w.ad_controlnet_guidance_start = gr.Slider(
label="ControlNet guidance start" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0,
visible=True,
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_guidance_start"),
)
w.ad_controlnet_guidance_end = gr.Slider(
label="ControlNet guidance end" + suffix(n),
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
visible=True,
interactive=controlnet_exists,
elem_id=eid("ad_controlnet_guidance_end"),
)