Files
ComfyUI_frontend/src/scripts/pnginfo.ts
Chenlei Hu c56533bb23 Workflow Management Reworked (#1406)
* Merge temp userfile

Basic migration

Remove deprecated isFavourite

Rename

nit

nit

Rework open/load

Refactor save

Refactor delete

Remove workflow dep on manager

WIP

Change map to record

Fix directory

nit

isActive

Move

nit

Add unload

Add close workflow

Remove workflowManager.closeWorkflow

nit

Remove workflowManager.storePrompt

move from commandStore

move more from commandStore

nit

Use workflowservice

nit

nit

implement setWorkflow

nit

Remove workflows.ts

Fix strict errors

nit

nit

Resolves circular dep

nit

nit

Fix workflow switching

Add openworkflowPaths

Fix store

Fix key

Serialize by default

Fix proxy

nit

Update path

Proper sync

Fix tabs

WIP

nit

Resolve merge conflict

Fix userfile store tests

Update jest test

Update tabs

patch tests

Fix changeTracker init

Move insert to service

nit

Fix insert

nit

Handle bookmark rename

Refactor tests

Add delete workflow

Add test on deleting workflow

Add closeWorkflow tests

nit

* Fix path

* Move load next/previous

* Move logic from store to service

* nit

* nit

* nit

* nit

* nit

* Add ChangeTracker.initialState

* ChangeTracker load/unload

* Remove app.changeWorkflow

* Hook to app.ts

* Changetracker restore

* nit

* nit

* nit

* Add debug logs

* Remove unnecessary checkState on graphLoad

* nit

* Fix strict

* Fix temp workflow name

* Track ismodified

* Fix reactivity

* nit

* Fix graph equal

* nit

* update test

* nit

* nit

* Fix modified state

* nit

* Fix modified state

* Sidebar force close

* tabs force close

* Fix save

* Add load remote workflow test

* Force save

* Add save test

* nit

* Correctly handle delete last opened workflow

* nit

* Fix workflow rename

* Fix save

* Fix tests

* Fix strict

* Update playwright tests

* Fix filename conflict handling

* nit

* Merge temporary and persisted ref

* Update playwright expectations

* nit

* nit

* Fix saveAs

* Add playwright test

* nit
2024-11-05 11:03:27 -05:00

471 lines
14 KiB
TypeScript

// @ts-strict-ignore
import { LiteGraph } from '@comfyorg/litegraph'
import { api } from './api'
import { getFromPngFile } from './metadata/png'
import { getFromFlacFile } from './metadata/flac'
import { workflowService } from '@/services/workflowService'
// Original functions left in for backwards compatibility
export function getPngMetadata(file: File): Promise<Record<string, string>> {
return getFromPngFile(file)
}
export function getFlacMetadata(file: File): Promise<Record<string, string>> {
return getFromFlacFile(file)
}
function parseExifData(exifData) {
// Check for the correct TIFF header (0x4949 for little-endian or 0x4D4D for big-endian)
const isLittleEndian = String.fromCharCode(...exifData.slice(0, 2)) === 'II'
// Function to read 16-bit and 32-bit integers from binary data
function readInt(offset, isLittleEndian, length) {
let arr = exifData.slice(offset, offset + length)
if (length === 2) {
return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint16(
0,
isLittleEndian
)
} else if (length === 4) {
return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint32(
0,
isLittleEndian
)
}
}
// Read the offset to the first IFD (Image File Directory)
const ifdOffset = readInt(4, isLittleEndian, 4)
function parseIFD(offset) {
const numEntries = readInt(offset, isLittleEndian, 2)
const result = {}
for (let i = 0; i < numEntries; i++) {
const entryOffset = offset + 2 + i * 12
const tag = readInt(entryOffset, isLittleEndian, 2)
const type = readInt(entryOffset + 2, isLittleEndian, 2)
const numValues = readInt(entryOffset + 4, isLittleEndian, 4)
const valueOffset = readInt(entryOffset + 8, isLittleEndian, 4)
// Read the value(s) based on the data type
let value
if (type === 2) {
// ASCII string
value = new TextDecoder('utf-8').decode(
exifData.subarray(valueOffset, valueOffset + numValues - 1)
)
}
result[tag] = value
}
return result
}
// Parse the first IFD
const ifdData = parseIFD(ifdOffset)
return ifdData
}
function splitValues(input) {
var output = {}
for (var key in input) {
var value = input[key]
var splitValues = value.split(':', 2)
output[splitValues[0]] = splitValues[1]
}
return output
}
export function getWebpMetadata(file) {
return new Promise<Record<string, string>>((r) => {
const reader = new FileReader()
reader.onload = (event) => {
const webp = new Uint8Array(event.target.result as ArrayBuffer)
const dataView = new DataView(webp.buffer)
// Check that the WEBP signature is present
if (
dataView.getUint32(0) !== 0x52494646 ||
dataView.getUint32(8) !== 0x57454250
) {
console.error('Not a valid WEBP file')
r({})
return
}
// Start searching for chunks after the WEBP signature
let offset = 12
let txt_chunks = {}
// Loop through the chunks in the WEBP file
while (offset < webp.length) {
const chunk_length = dataView.getUint32(offset + 4, true)
const chunk_type = String.fromCharCode(
...webp.slice(offset, offset + 4)
)
if (chunk_type === 'EXIF') {
if (
String.fromCharCode(...webp.slice(offset + 8, offset + 8 + 6)) ==
'Exif\0\0'
) {
offset += 6
}
let data = parseExifData(
webp.slice(offset + 8, offset + 8 + chunk_length)
)
for (var key in data) {
const value = data[key] as string
if (typeof value === 'string') {
const index = value.indexOf(':')
txt_chunks[value.slice(0, index)] = value.slice(index + 1)
}
}
break
}
offset += 8 + chunk_length
}
r(txt_chunks)
}
reader.readAsArrayBuffer(file)
})
}
export function getLatentMetadata(file) {
return new Promise((r) => {
const reader = new FileReader()
reader.onload = (event) => {
const safetensorsData = new Uint8Array(event.target.result as ArrayBuffer)
const dataView = new DataView(safetensorsData.buffer)
let header_size = dataView.getUint32(0, true)
let offset = 8
let header = JSON.parse(
new TextDecoder().decode(
safetensorsData.slice(offset, offset + header_size)
)
)
r(header.__metadata__)
}
var slice = file.slice(0, 1024 * 1024 * 4)
reader.readAsArrayBuffer(slice)
})
}
export async function importA1111(graph, parameters) {
const p = parameters.lastIndexOf('\nSteps:')
if (p > -1) {
const embeddings = await api.getEmbeddings()
const opts = parameters
.substr(p)
.split('\n')[1]
.match(
new RegExp('\\s*([^:]+:\\s*([^"\\{].*?|".*?"|\\{.*?\\}))\\s*(,|$)', 'g')
)
.reduce((p, n) => {
const s = n.split(':')
if (s[1].endsWith(',')) {
s[1] = s[1].substr(0, s[1].length - 1)
}
p[s[0].trim().toLowerCase()] = s[1].trim()
return p
}, {})
const p2 = parameters.lastIndexOf('\nNegative prompt:', p)
if (p2 > -1) {
let positive = parameters.substr(0, p2).trim()
let negative = parameters.substring(p2 + 18, p).trim()
const ckptNode = LiteGraph.createNode('CheckpointLoaderSimple')
const clipSkipNode = LiteGraph.createNode('CLIPSetLastLayer')
const positiveNode = LiteGraph.createNode('CLIPTextEncode')
const negativeNode = LiteGraph.createNode('CLIPTextEncode')
const samplerNode = LiteGraph.createNode('KSampler')
const imageNode = LiteGraph.createNode('EmptyLatentImage')
const vaeNode = LiteGraph.createNode('VAEDecode')
const vaeLoaderNode = LiteGraph.createNode('VAELoader')
const saveNode = LiteGraph.createNode('SaveImage')
let hrSamplerNode = null
let hrSteps = null
const ceil64 = (v) => Math.ceil(v / 64) * 64
const getWidget = (node, name) => {
return node.widgets.find((w) => w.name === name)
}
const setWidgetValue = (node, name, value, isOptionPrefix?) => {
const w = getWidget(node, name)
if (isOptionPrefix) {
const o = w.options.values.find((w) => w.startsWith(value))
if (o) {
w.value = o
} else {
console.warn(`Unknown value '${value}' for widget '${name}'`, node)
w.value = value
}
} else {
w.value = value
}
}
const createLoraNodes = (clipNode, text, prevClip, prevModel) => {
const loras = []
text = text.replace(/<lora:([^:]+:[^>]+)>/g, function (m, c) {
const s = c.split(':')
const weight = parseFloat(s[1])
if (isNaN(weight)) {
console.warn('Invalid LORA', m)
} else {
loras.push({ name: s[0], weight })
}
return ''
})
for (const l of loras) {
const loraNode = LiteGraph.createNode('LoraLoader')
graph.add(loraNode)
setWidgetValue(loraNode, 'lora_name', l.name, true)
setWidgetValue(loraNode, 'strength_model', l.weight)
setWidgetValue(loraNode, 'strength_clip', l.weight)
prevModel.node.connect(prevModel.index, loraNode, 0)
prevClip.node.connect(prevClip.index, loraNode, 1)
prevModel = { node: loraNode, index: 0 }
prevClip = { node: loraNode, index: 1 }
}
prevClip.node.connect(1, clipNode, 0)
prevModel.node.connect(0, samplerNode, 0)
if (hrSamplerNode) {
prevModel.node.connect(0, hrSamplerNode, 0)
}
return { text, prevModel, prevClip }
}
const replaceEmbeddings = (text) => {
if (!embeddings.length) return text
return text.replaceAll(
new RegExp(
'\\b(' +
embeddings
.map((e) => e.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'))
.join('\\b|\\b') +
')\\b',
'ig'
),
'embedding:$1'
)
}
const popOpt = (name) => {
const v = opts[name]
delete opts[name]
return v
}
graph.clear()
graph.add(ckptNode)
graph.add(clipSkipNode)
graph.add(positiveNode)
graph.add(negativeNode)
graph.add(samplerNode)
graph.add(imageNode)
graph.add(vaeNode)
graph.add(vaeLoaderNode)
graph.add(saveNode)
ckptNode.connect(1, clipSkipNode, 0)
clipSkipNode.connect(0, positiveNode, 0)
clipSkipNode.connect(0, negativeNode, 0)
ckptNode.connect(0, samplerNode, 0)
positiveNode.connect(0, samplerNode, 1)
negativeNode.connect(0, samplerNode, 2)
imageNode.connect(0, samplerNode, 3)
vaeNode.connect(0, saveNode, 0)
samplerNode.connect(0, vaeNode, 0)
vaeLoaderNode.connect(0, vaeNode, 1)
const handlers = {
model(v) {
setWidgetValue(ckptNode, 'ckpt_name', v, true)
},
vae(v) {
setWidgetValue(vaeLoaderNode, 'vae_name', v, true)
},
'cfg scale'(v) {
setWidgetValue(samplerNode, 'cfg', +v)
},
'clip skip'(v) {
setWidgetValue(clipSkipNode, 'stop_at_clip_layer', -v)
},
sampler(v) {
let name = v.toLowerCase().replace('++', 'pp').replaceAll(' ', '_')
if (name.includes('karras')) {
name = name.replace('karras', '').replace(/_+$/, '')
setWidgetValue(samplerNode, 'scheduler', 'karras')
} else {
setWidgetValue(samplerNode, 'scheduler', 'normal')
}
const w = getWidget(samplerNode, 'sampler_name')
const o = w.options.values.find(
(w) => w === name || w === 'sample_' + name
)
if (o) {
setWidgetValue(samplerNode, 'sampler_name', o)
}
},
size(v) {
const wxh = v.split('x')
const w = ceil64(+wxh[0])
const h = ceil64(+wxh[1])
const hrUp = popOpt('hires upscale')
const hrSz = popOpt('hires resize')
hrSteps = popOpt('hires steps')
let hrMethod = popOpt('hires upscaler')
setWidgetValue(imageNode, 'width', w)
setWidgetValue(imageNode, 'height', h)
if (hrUp || hrSz) {
let uw, uh
if (hrUp) {
uw = w * hrUp
uh = h * hrUp
} else {
const s = hrSz.split('x')
uw = +s[0]
uh = +s[1]
}
let upscaleNode
let latentNode
if (hrMethod.startsWith('Latent')) {
latentNode = upscaleNode = LiteGraph.createNode('LatentUpscale')
graph.add(upscaleNode)
samplerNode.connect(0, upscaleNode, 0)
switch (hrMethod) {
case 'Latent (nearest-exact)':
hrMethod = 'nearest-exact'
break
}
setWidgetValue(upscaleNode, 'upscale_method', hrMethod, true)
} else {
const decode = LiteGraph.createNode('VAEDecodeTiled')
graph.add(decode)
samplerNode.connect(0, decode, 0)
vaeLoaderNode.connect(0, decode, 1)
const upscaleLoaderNode =
LiteGraph.createNode('UpscaleModelLoader')
graph.add(upscaleLoaderNode)
setWidgetValue(upscaleLoaderNode, 'model_name', hrMethod, true)
const modelUpscaleNode = LiteGraph.createNode(
'ImageUpscaleWithModel'
)
graph.add(modelUpscaleNode)
decode.connect(0, modelUpscaleNode, 1)
upscaleLoaderNode.connect(0, modelUpscaleNode, 0)
upscaleNode = LiteGraph.createNode('ImageScale')
graph.add(upscaleNode)
modelUpscaleNode.connect(0, upscaleNode, 0)
const vaeEncodeNode = (latentNode =
LiteGraph.createNode('VAEEncodeTiled'))
graph.add(vaeEncodeNode)
upscaleNode.connect(0, vaeEncodeNode, 0)
vaeLoaderNode.connect(0, vaeEncodeNode, 1)
}
setWidgetValue(upscaleNode, 'width', ceil64(uw))
setWidgetValue(upscaleNode, 'height', ceil64(uh))
hrSamplerNode = LiteGraph.createNode('KSampler')
graph.add(hrSamplerNode)
ckptNode.connect(0, hrSamplerNode, 0)
positiveNode.connect(0, hrSamplerNode, 1)
negativeNode.connect(0, hrSamplerNode, 2)
latentNode.connect(0, hrSamplerNode, 3)
hrSamplerNode.connect(0, vaeNode, 0)
}
},
steps(v) {
setWidgetValue(samplerNode, 'steps', +v)
},
seed(v) {
setWidgetValue(samplerNode, 'seed', +v)
}
}
for (const opt in opts) {
if (opt in handlers) {
handlers[opt](popOpt(opt))
}
}
if (hrSamplerNode) {
setWidgetValue(
hrSamplerNode,
'steps',
hrSteps ? +hrSteps : getWidget(samplerNode, 'steps').value
)
setWidgetValue(
hrSamplerNode,
'cfg',
getWidget(samplerNode, 'cfg').value
)
setWidgetValue(
hrSamplerNode,
'scheduler',
getWidget(samplerNode, 'scheduler').value
)
setWidgetValue(
hrSamplerNode,
'sampler_name',
getWidget(samplerNode, 'sampler_name').value
)
setWidgetValue(
hrSamplerNode,
'denoise',
+(popOpt('denoising strength') || '1')
)
}
let n = createLoraNodes(
positiveNode,
positive,
{ node: clipSkipNode, index: 0 },
{ node: ckptNode, index: 0 }
)
positive = n.text
n = createLoraNodes(negativeNode, negative, n.prevClip, n.prevModel)
negative = n.text
setWidgetValue(positiveNode, 'text', replaceEmbeddings(positive))
setWidgetValue(negativeNode, 'text', replaceEmbeddings(negative))
graph.arrange()
for (const opt of [
'model hash',
'ensd',
'version',
'vae hash',
'ti hashes',
'lora hashes',
'hashes'
]) {
delete opts[opt]
}
console.warn('Unhandled parameters:', opts)
}
}
}