import argparse import cv2 import glob import matplotlib import numpy as np import os import torch import warnings from tqdm import tqdm from safetensors.torch import load_file # Code upgraded by: MackinationsAi from depth_anything_v2.dpt import DepthAnythingV2 warnings.filterwarnings("ignore", message=".*cudnnStatus.*") os.environ['TORCH_CUDNN_V8_API_ENABLED'] = '0' def process_video(video_path, output_path, input_size, encoder, pred_only, grayscale): DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} } depth_anything = DepthAnythingV2(**model_configs[encoder]) state_dict = load_file(f'checkpoints/depth_anything_v2_{encoder}.safetensors') # Use load_file to load safetensors depth_anything.load_state_dict(state_dict) depth_anything = depth_anything.to(DEVICE).eval() if os.path.isfile(video_path) and video_path.endswith('.mp4'): filenames = [video_path] else: filenames = glob.glob(os.path.join(video_path, '**/*.mp4'), recursive=True) os.makedirs(output_path, exist_ok=True) margin_width = 26 cmap = matplotlib.colormaps.get_cmap('Spectral_r') for k, filename in enumerate(filenames): print(f'Progress {k+1}/{len(filenames)}: {filename}') raw_video = cv2.VideoCapture(filename) frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS)) output_width = frame_width * 2 + margin_width base_filename = os.path.splitext(os.path.basename(filename))[0] combined_output_path = os.path.join(output_path, base_filename + '_combined.mp4') depth_output_path = os.path.join(output_path, base_filename + '_depth.mp4') grayscale_depth_output_path = os.path.join(output_path, base_filename + '_depth_grayscale.mp4') combined_out = cv2.VideoWriter(combined_output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (output_width, frame_height)) depth_out = cv2.VideoWriter(depth_output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (frame_width, frame_height)) grayscale_depth_out = cv2.VideoWriter(grayscale_depth_output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (frame_width, frame_height)) frame_count = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT)) for _ in tqdm(range(frame_count), desc="Processing frames", unit="frame"): ret, raw_frame = raw_video.read() if not ret: break depth = depth_anything.infer_image(raw_frame, input_size) depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth = depth.astype(np.uint8) depth_gray = np.repeat(depth[..., np.newaxis], 3, axis=-1) grayscale_depth_out.write(depth_gray) if not grayscale: depth_color = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8) depth_out.write(depth_color) if not pred_only: split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255 combined_frame = cv2.hconcat([raw_frame, split_region, depth_color]) combined_out.write(combined_frame) raw_video.release() combined_out.release() depth_out.release() grayscale_depth_out.release() def main(): while True: parser = argparse.ArgumentParser(description='Depth Anything V2') parser.add_argument('--video-path', type=str, help='Path to the video file or directory containing videos') parser.add_argument('--input-size', type=int, default=518) parser.add_argument('--outdir', type=str, default='vis_vid_depth', help='Output directory') parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg']) parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction') parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette') args = parser.parse_args() if not args.video_path: args.video_path = input("Please enter the path to the video file or directory containing videos: ").strip() if not args.outdir: args.outdir = input("Please enter the output directory (default is 'vis_vid_depth'): ").strip() or 'vis_video_depth' process_video(args.video_path, args.outdir, args.input_size, args.encoder, args.pred_only, args.grayscale) again = input("Would you like to convert another video? Y/N: ").strip().lower() if again not in ['y', 'yes']: break if __name__ == '__main__': main()