Files
UDAV2-ControlNet/run_image-depth_16bit.py
2024-06-30 23:05:05 -04:00

83 lines
3.7 KiB
Python

import argparse
import cv2
import glob
import matplotlib
import numpy as np
import os
import torch
import warnings
from tqdm import tqdm
from safetensors.torch import load_file
from depth_anything_v2.dpt import DepthAnythingV2
# Code upgraded by: MackinationsAi
warnings.filterwarnings("ignore", message=".*cudnnStatus.*")
def process_image(img_path, output_path, input_size, encoder, pred_only, grayscale):
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
depth_anything = DepthAnythingV2(**model_configs[encoder])
state_dict = load_file(f'checkpoints/depth_anything_v2_{encoder}.safetensors')
depth_anything.load_state_dict(state_dict)
depth_anything = depth_anything.to(DEVICE).eval()
if os.path.isfile(img_path) and (img_path.endswith('.png') or img_path.endswith('.jpg') or img_path.endswith('.jpeg')):
filenames = [img_path]
else:
filenames = glob.glob(os.path.join(img_path, '**/*.*'), recursive=True)
filenames = [f for f in filenames if f.endswith(('.png', '.jpg', '.jpeg'))]
os.makedirs(output_path, exist_ok=True)
cmap = matplotlib.colormaps.get_cmap('gray')
for k, filename in enumerate(tqdm(filenames, desc="Processing images", unit="image")):
print(f'Progress {k+1}/{len(filenames)}: {filename}')
raw_image = cv2.imread(filename)
depth = depth_anything.infer_image(raw_image, input_size)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 65025.0
depth = depth.astype(np.uint16)
depth_gray = np.repeat(depth[..., np.newaxis], 3, axis=-1)
cv2.imwrite(os.path.join(output_path, os.path.splitext(os.path.basename(filename))[0] + '_depth_grayscale.png'), depth_gray)
def main():
while True:
parser = argparse.ArgumentParser(description='Depth Anything V2')
parser.add_argument('--img-path', type=str, help='Path to the image file or directory containing images')
parser.add_argument('--input-size', type=int, default=2018)
parser.add_argument('--outdir', type=str, default='vis_img_depth', help='Output directory')
parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction')
parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette')
args = parser.parse_args()
if not args.img_path:
args.img_path = input("Path to image file/directory, can right click a file and Copy as Path, remove quotation marks if any: ").strip()
if not args.outdir:
args.outdir = input("Please enter the output directory (default is 'vis_img_depth'): ").strip() or 'vis_depth'
process_image(args.img_path, args.outdir, args.input_size, args.encoder, args.pred_only, args.grayscale)
again = input("Convert another image? Y/N: ").strip().lower()
if again not in ['y', 'yes']:
break
if __name__ == '__main__':
main()