Files
Maneet Singh a5bfb10e75 590.44.01
2025-12-02 15:32:25 -08:00

1161 lines
32 KiB
C

/*
* SPDX-FileCopyrightText: Copyright (c) 1999-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "os-interface.h"
#include "nv.h"
#include "nv-linux.h"
#include "nv-reg.h"
extern NvU32 NVreg_EnableSystemMemoryPools;
static inline void nv_set_contig_memory_uc(nvidia_pte_t *page_ptr, NvU32 num_pages)
{
#if defined(NV_SET_MEMORY_UC_PRESENT)
struct page *page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
unsigned long addr = (unsigned long)page_address(page);
set_memory_uc(addr, num_pages);
#elif defined(NV_SET_PAGES_UC_PRESENT)
struct page *page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
set_pages_uc(page, num_pages);
#endif
}
static inline void nv_set_contig_memory_wb(nvidia_pte_t *page_ptr, NvU32 num_pages)
{
#if defined(NV_SET_MEMORY_UC_PRESENT)
struct page *page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
unsigned long addr = (unsigned long)page_address(page);
set_memory_wb(addr, num_pages);
#elif defined(NV_SET_PAGES_UC_PRESENT)
struct page *page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
set_pages_wb(page, num_pages);
#endif
}
static inline int nv_set_memory_array_type_present(NvU32 type)
{
switch (type)
{
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
case NV_MEMORY_UNCACHED:
return 1;
case NV_MEMORY_WRITEBACK:
return 1;
#endif
default:
return 0;
}
}
static inline int nv_set_pages_array_type_present(NvU32 type)
{
switch (type)
{
#if defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
case NV_MEMORY_UNCACHED:
return 1;
case NV_MEMORY_WRITEBACK:
return 1;
#endif
default:
return 0;
}
}
static inline void nv_set_memory_array_type(
unsigned long *pages,
NvU32 num_pages,
NvU32 type
)
{
switch (type)
{
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
case NV_MEMORY_UNCACHED:
set_memory_array_uc(pages, num_pages);
break;
case NV_MEMORY_WRITEBACK:
set_memory_array_wb(pages, num_pages);
break;
#endif
default:
nv_printf(NV_DBG_ERRORS,
"NVRM: %s(): type %d unimplemented\n",
__FUNCTION__, type);
break;
}
}
static inline void nv_set_pages_array_type(
struct page **pages,
NvU32 num_pages,
NvU32 type
)
{
switch (type)
{
#if defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
case NV_MEMORY_UNCACHED:
set_pages_array_uc(pages, num_pages);
break;
case NV_MEMORY_WRITEBACK:
set_pages_array_wb(pages, num_pages);
break;
#endif
default:
nv_printf(NV_DBG_ERRORS,
"NVRM: %s(): type %d unimplemented\n",
__FUNCTION__, type);
break;
}
}
static inline void nv_set_contig_memory_type(
nvidia_pte_t *page_ptr,
NvU32 num_pages,
NvU32 type
)
{
switch (type)
{
case NV_MEMORY_UNCACHED:
nv_set_contig_memory_uc(page_ptr, num_pages);
break;
case NV_MEMORY_WRITEBACK:
nv_set_contig_memory_wb(page_ptr, num_pages);
break;
default:
nv_printf(NV_DBG_ERRORS,
"NVRM: %s(): type %d unimplemented\n",
__FUNCTION__, type);
}
}
static inline void nv_set_memory_type(nv_alloc_t *at, NvU32 type)
{
NvU32 i;
NV_STATUS status = NV_OK;
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
unsigned long *pages = NULL;
#elif defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
struct page **pages = NULL;
#else
unsigned long *pages = NULL;
#endif
nvidia_pte_t *page_ptr;
struct page *page;
if (at->flags.contig)
{
nv_set_contig_memory_type(&at->page_table[0], at->num_pages, type);
return;
}
if (nv_set_memory_array_type_present(type))
{
status = os_alloc_mem((void **)&pages,
at->num_pages * sizeof(unsigned long));
}
else if (nv_set_pages_array_type_present(type))
{
status = os_alloc_mem((void **)&pages,
at->num_pages * sizeof(struct page*));
}
if (status != NV_OK)
pages = NULL;
//
// If the set_{memory,page}_array_* functions are in the kernel interface,
// it's faster to use them since they work on non-contiguous memory,
// whereas the set_{memory,page}_* functions do not.
//
if (pages)
{
for (i = 0; i < at->num_pages; i++)
{
page_ptr = &at->page_table[i];
page = NV_GET_PAGE_STRUCT(page_ptr->phys_addr);
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
pages[i] = (unsigned long)page_address(page);
#elif defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
pages[i] = page;
#endif
}
#if defined(NV_SET_MEMORY_ARRAY_UC_PRESENT)
nv_set_memory_array_type(pages, at->num_pages, type);
#elif defined(NV_SET_PAGES_ARRAY_UC_PRESENT)
nv_set_pages_array_type(pages, at->num_pages, type);
#endif
os_free_mem(pages);
}
//
// If the set_{memory,page}_array_* functions aren't present in the kernel
// interface, each page has to be set individually, which has been measured
// to be ~10x slower than using the set_{memory,page}_array_* functions.
//
else
{
for (i = 0; i < at->num_pages; i++)
nv_set_contig_memory_type(&at->page_table[i], 1, type);
}
}
static NvU64 nv_get_max_sysmem_address(void)
{
NvU64 global_max_pfn = 0ULL;
int node_id;
for_each_online_node(node_id)
{
global_max_pfn = max(global_max_pfn, (NvU64)node_end_pfn(node_id));
}
return ((global_max_pfn + 1) << PAGE_SHIFT) - 1;
}
static unsigned int nv_compute_gfp_mask(
nv_state_t *nv,
nv_alloc_t *at
)
{
unsigned int gfp_mask = NV_GFP_KERNEL;
struct device *dev = at->dev;
/*
* If we know that SWIOTLB is enabled (and therefore we avoid calling the
* kernel to DMA-remap the pages), or if we are using dma_direct (which may
* transparently use the SWIOTLB for pages that are unaddressable by the
* device, in kernel versions 5.0 and later), limit our allocation pool
* to the first 4GB to avoid allocating pages outside of our device's
* addressable limit.
* Also, limit the allocation to the first 4GB if explicitly requested by
* setting the "nv->force_dma32_alloc" variable.
*/
if (!nv || !nv_requires_dma_remap(nv) || nv_is_dma_direct(dev) || nv->force_dma32_alloc)
{
NvU64 max_sysmem_address = nv_get_max_sysmem_address();
if ((dev && dev->dma_mask && (*(dev->dma_mask) < max_sysmem_address)) ||
(nv && nv->force_dma32_alloc))
{
gfp_mask = NV_GFP_KERNEL | NV_GFP_DMA32;
}
}
gfp_mask |= __GFP_RETRY_MAYFAIL;
if (at->flags.zeroed)
gfp_mask |= __GFP_ZERO;
if (at->flags.node)
gfp_mask |= __GFP_THISNODE;
// Compound pages are required by vm_insert_page for high-order page
// allocations
if (at->order > 0)
gfp_mask |= __GFP_COMP;
return gfp_mask;
}
// set subpages describing page
static void
nv_alloc_set_page
(
nv_alloc_t *at,
unsigned int page_idx,
unsigned long virt_addr
)
{
unsigned long phys_addr = nv_get_kern_phys_address(virt_addr);
unsigned int os_pages_in_page = 1 << at->order;
unsigned int base_os_page = page_idx * os_pages_in_page;
unsigned int num_os_pages = NV_MIN(at->num_pages - base_os_page, os_pages_in_page);
unsigned int i;
for (i = 0; i < num_os_pages; i++)
{
at->page_table[base_os_page + i].virt_addr = virt_addr + i * PAGE_SIZE;
at->page_table[base_os_page + i].phys_addr = phys_addr + i * PAGE_SIZE;
}
}
/*
* This function is needed for allocating contiguous physical memory in xen
* dom0. Because of the use of xen sw iotlb in xen dom0, memory allocated by
* NV_GET_FREE_PAGES may not be machine contiguous when size is more than
* 1 page. nv_alloc_coherent_pages() will give us machine contiguous memory.
* Even though we get dma_address directly in this function, we will
* still call pci_map_page() later to get dma address. This is fine as it
* will return the same machine address.
*/
static NV_STATUS nv_alloc_coherent_pages(
nv_state_t *nv,
nv_alloc_t *at
)
{
nvidia_pte_t *page_ptr;
NvU32 i;
unsigned int gfp_mask;
unsigned long virt_addr = 0;
nv_linux_state_t *nvl;
struct device *dev;
if (!nv)
{
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: coherent page alloc on nvidiactl not supported\n", __FUNCTION__);
return NV_ERR_NOT_SUPPORTED;
}
nvl = NV_GET_NVL_FROM_NV_STATE(nv);
dev = nvl->dev;
gfp_mask = nv_compute_gfp_mask(nv, at);
virt_addr = (unsigned long)dma_alloc_coherent(dev,
at->num_pages * PAGE_SIZE,
&at->dma_handle,
gfp_mask);
if (!virt_addr)
{
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: failed to allocate memory\n", __FUNCTION__);
return NV_ERR_NO_MEMORY;
}
for (i = 0; i < at->num_pages; i++)
{
page_ptr = &at->page_table[i];
page_ptr->virt_addr = virt_addr + i * PAGE_SIZE;
page_ptr->phys_addr = virt_to_phys((void *)page_ptr->virt_addr);
}
if (at->cache_type != NV_MEMORY_CACHED)
{
nv_set_memory_type(at, NV_MEMORY_UNCACHED);
}
at->flags.coherent = NV_TRUE;
return NV_OK;
}
static void nv_free_coherent_pages(
nv_alloc_t *at
)
{
nvidia_pte_t *page_ptr;
struct device *dev = at->dev;
page_ptr = &at->page_table[0];
if (at->cache_type != NV_MEMORY_CACHED)
{
nv_set_memory_type(at, NV_MEMORY_WRITEBACK);
}
dma_free_coherent(dev, at->num_pages * PAGE_SIZE,
(void *)page_ptr->virt_addr, at->dma_handle);
}
typedef struct
{
unsigned long virt_addr;
struct list_head list_node;
} nv_page_pool_entry_t;
#define NV_MEM_POOL_LIST_HEAD(list) list_first_entry_or_null(list, nv_page_pool_entry_t, list_node)
typedef struct nv_page_pool_t
{
struct list_head clean_list;
struct list_head dirty_list;
nv_kthread_q_t scrubber_queue;
nv_kthread_q_item_t scrubber_queue_item;
int node_id;
unsigned int order;
unsigned long pages_owned;
void *lock;
struct shrinker *shrinker;
#ifndef NV_SHRINKER_ALLOC_PRESENT
struct shrinker _shrinker;
#endif
} nv_page_pool_t;
nv_page_pool_t *sysmem_page_pools[MAX_NUMNODES][NV_MAX_PAGE_ORDER + 1];
#ifdef NV_SHRINKER_ALLOC_PRESENT
static nv_page_pool_t *nv_mem_pool_get_from_shrinker(struct shrinker *shrinker)
{
return shrinker->private_data;
}
static void nv_mem_pool_shrinker_free(nv_page_pool_t *mem_pool)
{
if (mem_pool->shrinker != NULL)
{
shrinker_free(mem_pool->shrinker);
}
}
static struct shrinker *nv_mem_pool_shrinker_alloc(nv_page_pool_t *mem_pool)
{
return shrinker_alloc(SHRINKER_NUMA_AWARE, "nv-sysmem-alloc-node-%d-order-%u", mem_pool->node_id, mem_pool->order);
}
static void nv_mem_pool_shrinker_register(nv_page_pool_t *mem_pool, struct shrinker *shrinker)
{
shrinker->private_data = mem_pool;
shrinker_register(shrinker);
}
#else
static nv_page_pool_t *nv_mem_pool_get_from_shrinker(struct shrinker *shrinker)
{
return container_of(shrinker, nv_page_pool_t, _shrinker);
}
static void nv_mem_pool_shrinker_free(nv_page_pool_t *mem_pool)
{
if (mem_pool->shrinker != NULL)
{
unregister_shrinker(mem_pool->shrinker);
}
}
static struct shrinker *nv_mem_pool_shrinker_alloc(nv_page_pool_t *mem_pool)
{
return &mem_pool->_shrinker;
}
static void nv_mem_pool_shrinker_register(nv_page_pool_t *mem_pool, struct shrinker *shrinker)
{
shrinker->flags |= SHRINKER_NUMA_AWARE;
register_shrinker(shrinker
#ifdef NV_REGISTER_SHRINKER_HAS_FMT_ARG
, "nv-sysmem-alloc-node-%d-order-%u", mem_pool->node_id, mem_pool->order
#endif // NV_REGISTER_SHRINKER_HAS_FMT_ARG
);
}
#endif // NV_SHRINKER_ALLOC_PRESENT
static unsigned long
nv_mem_pool_move_pages
(
struct list_head *dst_list,
struct list_head *src_list,
unsigned long max_entries_to_move
)
{
while (max_entries_to_move > 0)
{
nv_page_pool_entry_t *pool_entry = NV_MEM_POOL_LIST_HEAD(src_list);
if (pool_entry == NULL)
break;
list_del(&pool_entry->list_node);
list_add(&pool_entry->list_node, dst_list);
max_entries_to_move--;
}
return max_entries_to_move;
}
static void
nv_mem_pool_free_page_list
(
struct list_head *free_list,
unsigned int order
)
{
while (!list_empty(free_list))
{
nv_page_pool_entry_t *pool_entry = NV_MEM_POOL_LIST_HEAD(free_list);
list_del(&pool_entry->list_node);
NV_FREE_PAGES(pool_entry->virt_addr, order)
NV_KFREE(pool_entry, sizeof(*pool_entry));
}
}
static unsigned long
nv_mem_pool_shrinker_count
(
struct shrinker *shrinker,
struct shrink_control *sc
)
{
nv_page_pool_t *mem_pool = nv_mem_pool_get_from_shrinker(shrinker);
unsigned long pages_owned;
if (sc->nid != mem_pool->node_id)
{
pages_owned = 0;
goto done;
}
if (os_acquire_mutex(mem_pool->lock) != NV_OK)
return 0;
// Page that is being scrubbed by worker is also counted
pages_owned = mem_pool->pages_owned;
os_release_mutex(mem_pool->lock);
nv_printf(NV_DBG_MEMINFO, "NVRM: VM: %s: node=%d order=%u: %lu pages in pool\n",
__FUNCTION__, mem_pool->node_id, mem_pool->order, pages_owned);
done:
#ifdef SHRINK_EMPTY
return (pages_owned == 0) ? SHRINK_EMPTY : pages_owned;
#else
return pages_owned;
#endif
}
static unsigned long
nv_mem_pool_shrinker_scan
(
struct shrinker *shrinker,
struct shrink_control *sc
)
{
nv_page_pool_t *mem_pool = nv_mem_pool_get_from_shrinker(shrinker);
unsigned long pages_remaining;
unsigned long pages_freed;
struct list_head reclaim_list;
if (sc->nid != mem_pool->node_id)
return SHRINK_STOP;
INIT_LIST_HEAD(&reclaim_list);
if (os_acquire_mutex(mem_pool->lock) != NV_OK)
return SHRINK_STOP;
pages_remaining = sc->nr_to_scan;
pages_remaining = nv_mem_pool_move_pages(&reclaim_list, &mem_pool->dirty_list, pages_remaining);
pages_remaining = nv_mem_pool_move_pages(&reclaim_list, &mem_pool->clean_list, pages_remaining);
pages_freed = sc->nr_to_scan - pages_remaining;
mem_pool->pages_owned -= pages_freed;
os_release_mutex(mem_pool->lock);
nv_mem_pool_free_page_list(&reclaim_list, mem_pool->order);
nv_printf(NV_DBG_MEMINFO, "NVRM: VM: %s: node=%d order=%u: %lu/%lu pages freed\n",
__FUNCTION__, mem_pool->node_id, mem_pool->order, pages_freed, sc->nr_to_scan);
return (pages_freed == 0) ? SHRINK_STOP : pages_freed;
}
static void
nv_mem_pool_clear_page(unsigned long virt_addr, unsigned int order)
{
unsigned int os_pages_in_page = 1 << order;
unsigned int i;
for (i = 0; i < os_pages_in_page; i++)
{
clear_page((void *)(virt_addr + i * PAGE_SIZE));
}
}
unsigned int
nv_mem_pool_alloc_pages
(
nv_page_pool_t *mem_pool,
nv_alloc_t *at
)
{
unsigned int os_pages_in_page = 1 << at->order;
unsigned int max_num_pages = NV_CEIL(at->num_pages, os_pages_in_page);
nv_page_pool_entry_t *pool_entry;
unsigned int pages_remaining = max_num_pages;
unsigned int pages_allocated;
unsigned int pages_allocated_clean;
unsigned long pages_owned;
unsigned int i = 0;
struct list_head alloc_clean_pages;
struct list_head alloc_dirty_pages;
NV_STATUS status;
if (!NV_MAY_SLEEP())
{
// can't wait for the mutex
return 0;
}
INIT_LIST_HEAD(&alloc_clean_pages);
INIT_LIST_HEAD(&alloc_dirty_pages);
status = os_acquire_mutex(mem_pool->lock);
WARN_ON(status != NV_OK);
pages_remaining = nv_mem_pool_move_pages(&alloc_clean_pages, &mem_pool->clean_list, pages_remaining);
pages_allocated_clean = (max_num_pages - pages_remaining);
pages_remaining = nv_mem_pool_move_pages(&alloc_dirty_pages, &mem_pool->dirty_list, pages_remaining);
pages_allocated = (max_num_pages - pages_remaining);
mem_pool->pages_owned -= pages_allocated;
pages_owned = mem_pool->pages_owned;
os_release_mutex(mem_pool->lock);
while ((pool_entry = NV_MEM_POOL_LIST_HEAD(&alloc_clean_pages)))
{
nv_alloc_set_page(at, i, pool_entry->virt_addr);
list_del(&pool_entry->list_node);
NV_KFREE(pool_entry, sizeof(*pool_entry));
i++;
}
while ((pool_entry = NV_MEM_POOL_LIST_HEAD(&alloc_dirty_pages)))
{
nv_mem_pool_clear_page(pool_entry->virt_addr, mem_pool->order);
nv_alloc_set_page(at, i, pool_entry->virt_addr);
list_del(&pool_entry->list_node);
NV_KFREE(pool_entry, sizeof(*pool_entry));
i++;
}
if (i != pages_allocated)
{
os_dbg_breakpoint();
}
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: node=%d order=%u: %lu/%lu pages allocated (%lu already cleared, %lu left in pool)\n",
__FUNCTION__, mem_pool->node_id, mem_pool->order, pages_allocated, max_num_pages, pages_allocated_clean,
pages_owned);
return pages_allocated;
}
static void
nv_mem_pool_queue_worker(nv_page_pool_t *mem_pool)
{
nv_kthread_q_schedule_q_item(&mem_pool->scrubber_queue,
&mem_pool->scrubber_queue_item);
}
static void
nv_mem_pool_worker(void *arg)
{
nv_page_pool_t *mem_pool = arg;
nv_page_pool_entry_t *pool_entry = NULL;
NV_STATUS status;
for (;;)
{
status = os_acquire_mutex(mem_pool->lock);
WARN_ON(status != NV_OK);
if (pool_entry != NULL)
{
// add the entry from the last pass, avoid getting the lock again
list_add(&pool_entry->list_node, &mem_pool->clean_list);
}
pool_entry = NV_MEM_POOL_LIST_HEAD(&mem_pool->dirty_list);
if (pool_entry == NULL)
{
os_release_mutex(mem_pool->lock);
break;
}
list_del(&pool_entry->list_node);
os_release_mutex(mem_pool->lock);
nv_mem_pool_clear_page(pool_entry->virt_addr, mem_pool->order);
}
}
void
nv_mem_pool_destroy(nv_page_pool_t *mem_pool)
{
NV_STATUS status;
status = os_acquire_mutex(mem_pool->lock);
WARN_ON(status != NV_OK);
nv_mem_pool_free_page_list(&mem_pool->dirty_list, mem_pool->order);
os_release_mutex(mem_pool->lock);
// All pages are freed, so scrubber won't attempt to requeue
nv_kthread_q_stop(&mem_pool->scrubber_queue);
status = os_acquire_mutex(mem_pool->lock);
WARN_ON(status != NV_OK);
// free clean pages after scrubber can't add any new
nv_mem_pool_free_page_list(&mem_pool->clean_list, mem_pool->order);
os_release_mutex(mem_pool->lock);
nv_mem_pool_shrinker_free(mem_pool);
os_free_mutex(mem_pool->lock);
NV_KFREE(mem_pool, sizeof(*mem_pool));
}
nv_page_pool_t* nv_mem_pool_init(int node_id, unsigned int order)
{
struct shrinker *shrinker;
nv_page_pool_t *mem_pool;
NV_KZALLOC(mem_pool, sizeof(*mem_pool));
if (mem_pool == NULL)
{
nv_printf(NV_DBG_SETUP, "NVRM: %s: failed allocating memory\n", __FUNCTION__);
return NULL;
}
mem_pool->node_id = node_id;
mem_pool->order = order;
INIT_LIST_HEAD(&mem_pool->clean_list);
INIT_LIST_HEAD(&mem_pool->dirty_list);
if (os_alloc_mutex(&mem_pool->lock))
{
nv_printf(NV_DBG_SETUP, "NVRM: %s: failed allocating mutex for worker thread\n", __FUNCTION__);
goto failed;
}
if (nv_kthread_q_init_on_node(&mem_pool->scrubber_queue, "nv_mem_pool_scrubber_queue", node_id))
{
nv_printf(NV_DBG_SETUP, "NVRM: %s: failed allocating worker thread\n", __FUNCTION__);
goto failed;
}
nv_kthread_q_item_init(&mem_pool->scrubber_queue_item, nv_mem_pool_worker, mem_pool);
shrinker = nv_mem_pool_shrinker_alloc(mem_pool);
if (shrinker == NULL)
{
nv_printf(NV_DBG_SETUP, "NVRM: %s: failed allocating shrinker\n", __FUNCTION__);
goto failed;
}
shrinker->count_objects = nv_mem_pool_shrinker_count;
shrinker->scan_objects = nv_mem_pool_shrinker_scan;
shrinker->seeks = 1;
nv_mem_pool_shrinker_register(mem_pool, shrinker);
mem_pool->shrinker = shrinker;
return mem_pool;
failed:
nv_mem_pool_destroy(mem_pool);
return NULL;
}
NV_STATUS
nv_mem_pool_free_pages
(
nv_page_pool_t *mem_pool,
nv_alloc_t *at
)
{
unsigned int os_pages_in_page = 1 << at->order;
unsigned int num_pages = NV_CEIL(at->num_pages, os_pages_in_page);
NvBool queue_worker;
nv_page_pool_entry_t *pool_entry;
struct list_head freed_pages;
unsigned int num_added_pages = 0;
unsigned long pages_owned;
unsigned int i;
NV_STATUS status;
if (!NV_MAY_SLEEP())
{
// can't wait for the mutex
return NV_ERR_INVALID_ARGUMENT;
}
INIT_LIST_HEAD(&freed_pages);
for (i = 0; i < num_pages; i++)
{
nvidia_pte_t *page_ptr = &at->page_table[i * os_pages_in_page];
if (page_ptr->virt_addr == 0)
{
// alloc failed
break;
}
if (page_to_nid(NV_GET_PAGE_STRUCT(page_ptr->phys_addr)) != mem_pool->node_id)
{
// Only accept pages from the right node
NV_FREE_PAGES(page_ptr->virt_addr, mem_pool->order);
continue;
}
NV_KZALLOC(pool_entry, sizeof(*pool_entry));
if (pool_entry == NULL)
{
NV_FREE_PAGES(page_ptr->virt_addr, mem_pool->order);
continue;
}
pool_entry->virt_addr = page_ptr->virt_addr;
list_add(&pool_entry->list_node, &freed_pages);
num_added_pages++;
}
if (num_added_pages == 0)
return NV_OK;
status = os_acquire_mutex(mem_pool->lock);
WARN_ON(status != NV_OK);
// Worker is already queued if list is not empty
queue_worker = list_empty(&mem_pool->dirty_list);
list_splice_init(&freed_pages, &mem_pool->dirty_list);
mem_pool->pages_owned += num_added_pages;
pages_owned = mem_pool->pages_owned;
os_release_mutex(mem_pool->lock);
nv_printf(NV_DBG_MEMINFO, "NVRM: VM: %s: node=%d order=%u: %lu/%lu pages added to pool (%lu now in pool)\n",
__FUNCTION__, mem_pool->node_id, mem_pool->order, num_added_pages, num_pages, pages_owned);
if (queue_worker)
{
nv_mem_pool_queue_worker(mem_pool);
}
return NV_OK;
}
NV_STATUS nv_init_page_pools(void)
{
int node_id;
unsigned int order;
for_each_node(node_id)
{
for (order = 0; order <= NV_MAX_PAGE_ORDER; order++)
{
unsigned long page_size = PAGE_SIZE << order;
if (!(NVreg_EnableSystemMemoryPools & (page_size >> NV_ENABLE_SYSTEM_MEMORY_POOLS_SHIFT)))
continue;
sysmem_page_pools[node_id][order] = nv_mem_pool_init(node_id, order);
if (sysmem_page_pools[node_id][order] == NULL)
{
return NV_ERR_NO_MEMORY;
}
}
}
return NV_OK;
}
void nv_destroy_page_pools(void)
{
int node_id;
unsigned int order;
for_each_node(node_id)
{
for (order = 0; order <= NV_MAX_PAGE_ORDER; order++)
{
if (sysmem_page_pools[node_id][order])
nv_mem_pool_destroy(sysmem_page_pools[node_id][order]);
}
}
}
static nv_page_pool_t *nv_mem_pool_get(int node_id, unsigned int order)
{
if (node_id >= ARRAY_SIZE(sysmem_page_pools))
return NULL;
// get_order() is not limited by NV_MAX_PAGE_ORDER
if (order >= ARRAY_SIZE(sysmem_page_pools[node_id]))
return NULL;
return sysmem_page_pools[node_id][order];
}
void
nv_free_system_pages
(
nv_alloc_t *at
)
{
nv_page_pool_t *page_pool = NULL;
unsigned int os_pages_in_page = 1 << at->order;
unsigned int num_pages = NV_CEIL(at->num_pages, os_pages_in_page);
unsigned int i;
if (at->page_table[0].virt_addr != 0)
{
// if low on memory, pages could be allocated from different nodes
int likely_node_id = page_to_nid(NV_GET_PAGE_STRUCT(at->page_table[0].phys_addr));
page_pool = nv_mem_pool_get(likely_node_id, at->order);
}
if (at->cache_type != NV_MEMORY_CACHED)
{
nv_set_memory_type(at, NV_MEMORY_WRITEBACK);
}
for (i = 0; i < num_pages; i++)
{
nvidia_pte_t *page_ptr = &at->page_table[i * os_pages_in_page];
if (page_ptr->virt_addr == 0)
{
// alloc failed
break;
}
// For unprotected sysmem in CC, memory is marked as unencrypted during allocation.
// NV_FREE_PAGES only deals with protected sysmem. Mark memory as encrypted and protected before free.
nv_set_memory_encrypted(at->flags.unencrypted, page_ptr->virt_addr, 1 << at->order);
}
if (!at->flags.pool || page_pool == NULL ||
nv_mem_pool_free_pages(page_pool, at) != NV_OK)
{
// nv_mem_pool_free_pages() fails if !NV_MAY_SLEEP()
for (i = 0; i < num_pages; i++)
{
unsigned int base_os_page = i * os_pages_in_page;
nvidia_pte_t *page_ptr = &at->page_table[base_os_page];
if (page_ptr->virt_addr == 0)
{
// alloc failed
break;
}
NV_FREE_PAGES(page_ptr->virt_addr, at->order);
}
}
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: %u/%u order0 pages\n", __FUNCTION__, i * os_pages_in_page, at->num_pages);
}
NV_STATUS
nv_alloc_system_pages
(
nv_state_t *nv,
nv_alloc_t *at
)
{
unsigned int gfp_mask = nv_compute_gfp_mask(nv, at);
unsigned int i;
unsigned int num_pool_allocated_pages = 0;
unsigned int os_pages_in_page = 1 << at->order;
unsigned int num_pages = NV_CEIL(at->num_pages, os_pages_in_page);
// OS allocator tries CPU node first by default, mirror that
int preferred_node_id = at->flags.node ? at->node_id : numa_mem_id();
nv_page_pool_t *page_pool = nv_mem_pool_get(preferred_node_id, at->order);
// Remember if pool allocation was attempted and use it on free to avoid hoarding memory
// Avoid unwanted scrubbing, especially important for onlined FB
// Cross-node cache invalidation at remap can be dramatically slower if memory is not cached locally
at->flags.pool = !(gfp_mask & NV_GFP_DMA32) &&
at->flags.zeroed &&
(at->cache_type == NV_MEMORY_CACHED || num_online_nodes() <= 1);
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: %u order0 pages, %u order\n", __FUNCTION__, at->num_pages, at->order);
if (page_pool != NULL && at->flags.pool)
{
num_pool_allocated_pages = nv_mem_pool_alloc_pages(page_pool, at);
}
for (i = num_pool_allocated_pages; i < num_pages; i++)
{
unsigned long virt_addr = 0;
if (at->flags.node)
{
unsigned long ptr = 0ULL;
NV_ALLOC_PAGES_NODE(ptr, at->node_id, at->order, gfp_mask);
if (ptr != 0)
{
virt_addr = (unsigned long) page_address((void *)ptr);
}
}
else
{
NV_GET_FREE_PAGES(virt_addr, at->order, gfp_mask);
}
if (virt_addr == 0)
{
goto failed;
}
nv_alloc_set_page(at, i, virt_addr);
}
for (i = 0; i < num_pages; i++)
{
unsigned int base_os_page = i * os_pages_in_page;
nvidia_pte_t *page_ptr = &at->page_table[base_os_page];
unsigned int num_os_pages = NV_MIN(at->num_pages - base_os_page, os_pages_in_page);
// In CC, NV_GET_FREE_PAGES only allocates protected sysmem.
// To get unprotected sysmem, this memory is marked as unencrypted.
nv_set_memory_decrypted_zeroed(at->flags.unencrypted, page_ptr->virt_addr, 1 << at->order,
num_os_pages * PAGE_SIZE);
}
if (at->cache_type != NV_MEMORY_CACHED)
{
nv_set_memory_type(at, NV_MEMORY_UNCACHED);
}
return NV_OK;
failed:
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: failed to allocate memory\n", __FUNCTION__);
nv_free_system_pages(at);
return NV_ERR_NO_MEMORY;
}
NV_STATUS nv_alloc_contig_pages(
nv_state_t *nv,
nv_alloc_t *at
)
{
NV_STATUS status;
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: %u pages\n", __FUNCTION__, at->num_pages);
if (os_is_xen_dom0())
return nv_alloc_coherent_pages(nv, at);
at->order = get_order(at->num_pages * PAGE_SIZE);
status = nv_alloc_system_pages(nv, at);
if (status != NV_OK)
{
if (os_is_vgx_hyper())
{
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: failed to allocate memory, trying coherent memory \n", __FUNCTION__);
status = nv_alloc_coherent_pages(nv, at);
return status;
}
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: failed to allocate memory\n", __FUNCTION__);
return NV_ERR_NO_MEMORY;
}
return NV_OK;
}
void nv_free_contig_pages(
nv_alloc_t *at
)
{
nv_printf(NV_DBG_MEMINFO,
"NVRM: VM: %s: %u pages\n", __FUNCTION__, at->num_pages);
if (at->flags.coherent)
return nv_free_coherent_pages(at);
nv_free_system_pages(at);
}
static NvUPtr nv_vmap(struct page **pages, NvU32 page_count,
NvBool cached, NvBool unencrypted)
{
void *ptr;
pgprot_t prot = PAGE_KERNEL;
#if defined(NVCPU_X86_64)
if (unencrypted)
{
prot = cached ? nv_adjust_pgprot(PAGE_KERNEL_NOENC) :
nv_adjust_pgprot(NV_PAGE_KERNEL_NOCACHE_NOENC);
}
else
{
prot = cached ? PAGE_KERNEL : PAGE_KERNEL_NOCACHE;
}
#elif defined(NVCPU_AARCH64)
prot = cached ? PAGE_KERNEL : NV_PGPROT_UNCACHED(PAGE_KERNEL);
#endif
ptr = vmap(pages, page_count, VM_MAP, prot);
NV_MEMDBG_ADD(ptr, page_count * PAGE_SIZE);
return (NvUPtr)ptr;
}
static void nv_vunmap(NvUPtr vaddr, NvU32 page_count)
{
vunmap((void *)vaddr);
NV_MEMDBG_REMOVE((void *)vaddr, page_count * PAGE_SIZE);
}
NvUPtr nv_vm_map_pages(
struct page **pages,
NvU32 count,
NvBool cached,
NvBool unencrypted
)
{
NvUPtr virt_addr = 0;
if (!NV_MAY_SLEEP())
{
nv_printf(NV_DBG_ERRORS,
"NVRM: %s: can't map %d pages, invalid context!\n",
__FUNCTION__, count);
os_dbg_breakpoint();
return virt_addr;
}
virt_addr = nv_vmap(pages, count, cached, unencrypted);
return virt_addr;
}
void nv_vm_unmap_pages(
NvUPtr virt_addr,
NvU32 count
)
{
if (!NV_MAY_SLEEP())
{
nv_printf(NV_DBG_ERRORS,
"NVRM: %s: can't unmap %d pages at 0x%0llx, "
"invalid context!\n", __FUNCTION__, count, virt_addr);
os_dbg_breakpoint();
return;
}
nv_vunmap(virt_addr, count);
}