Files
Maneet Singh 307159f262 580.65.06
2025-08-04 11:15:02 -07:00

2207 lines
65 KiB
C

/*
* SPDX-FileCopyrightText: Copyright (c) 2019-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "nv-pci-table.h"
#include "nv-pci-types.h"
#include "nv-pci.h"
#include "nv-msi.h"
#include "nv-hypervisor.h"
#include "nv-reg.h"
#if defined(NV_VGPU_KVM_BUILD)
#include "nv-vgpu-vfio-interface.h"
#endif
#include <linux/iommu.h>
#include <linux/clk.h>
#include <linux/device.h>
#if defined(CONFIG_PM_DEVFREQ)
#include <linux/devfreq.h>
#endif
#if defined(CONFIG_INTERCONNECT) \
&& defined(NV_ICC_SET_BW_PRESENT) \
&& defined(NV_DEVM_ICC_GET_PRESENT)
#include <linux/interconnect.h>
#define NV_HAS_ICC_SUPPORTED 1
#else
#define NV_HAS_ICC_SUPPORTED 0
#endif
#if defined(NV_SEQ_READ_ITER_PRESENT)
#include <linux/seq_file.h>
#include <linux/kernfs.h>
#endif
#include "detect-self-hosted.h"
#if !defined(NV_BUS_TYPE_HAS_IOMMU_OPS)
#include <linux/iommu.h>
#endif
#if NV_IS_EXPORT_SYMBOL_GPL_pci_ats_supported
#include <linux/pci-ats.h>
#endif
extern int NVreg_GrdmaPciTopoCheckOverride;
static void
nv_check_and_exclude_gpu(
nvidia_stack_t *sp,
nv_state_t *nv
)
{
char *uuid_str;
uuid_str = rm_get_gpu_uuid(sp, nv);
if (uuid_str == NULL)
{
NV_DEV_PRINTF(NV_DBG_INFO, nv, "Unable to read UUID");
return;
}
if (nv_is_uuid_in_gpu_exclusion_list(uuid_str))
{
NV_STATUS rm_status = rm_exclude_adapter(sp, nv);
if (rm_status != NV_OK)
{
NV_DEV_PRINTF_STATUS(NV_DBG_ERRORS, nv, rm_status,
"Failed to exclude GPU %s", uuid_str);
goto done;
}
nv->flags |= NV_FLAG_EXCLUDE;
NV_DEV_PRINTF(NV_DBG_INFO, nv, "Excluded GPU %s successfully\n",
uuid_str);
}
done:
os_free_mem(uuid_str);
}
static NvBool nv_treat_missing_irq_as_error(void)
{
#if defined(NV_LINUX_PCIE_MSI_SUPPORTED)
return (nv_get_hypervisor_type() != OS_HYPERVISOR_HYPERV);
#else
return NV_TRUE;
#endif
}
static void nv_get_pci_sysfs_config
(
struct pci_dev *pci_dev,
nv_linux_state_t *nvl
)
{
#if NV_FILESYSTEM_ACCESS_AVAILABLE
char filename[50];
int ret;
ret = snprintf(filename, sizeof(filename),
"/sys/bus/pci/devices/%04x:%02x:%02x.0/config",
NV_PCI_DOMAIN_NUMBER(pci_dev),
NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev));
if (ret > 0 && ret < sizeof(filename))
{
struct file *file = filp_open(filename, O_RDONLY, 0);
if (!IS_ERR(file))
{
#if defined(NV_SEQ_READ_ITER_PRESENT)
/*
* Sanity check for confirming if file path is mounted over
* sysfs file system.
*/
if ((file->f_inode != NULL) && (file->f_inode->i_sb != NULL) &&
(strcmp(file->f_inode->i_sb->s_id, "sysfs") == 0))
{
struct seq_file *sf = file->private_data;
/*
* Sanity check for confirming if 'file->private_data'
* actually points to 'struct seq_file'.
*/
if ((sf != NULL) && (sf->file == file) && (sf->op == NULL))
{
struct kernfs_open_file *of = sf->private;
/*
* Sanity check for confirming if 'sf->private'
* actually points to 'struct kernfs_open_file'.
*/
if ((of != NULL) && (of->file == file) &&
(of->seq_file == sf))
{
nvl->sysfs_config_file = file;
}
}
}
if (nvl->sysfs_config_file == NULL)
{
filp_close(file, NULL);
}
#else
nvl->sysfs_config_file = file;
#endif
}
}
#endif
}
static int nv_resize_pcie_bars(struct pci_dev *pci_dev) {
#if defined(NV_PCI_REBAR_GET_POSSIBLE_SIZES_PRESENT)
u16 cmd;
int r, old_size, requested_size;
unsigned long sizes;
int ret = 0;
#if NV_IS_EXPORT_SYMBOL_PRESENT_pci_find_host_bridge
struct pci_host_bridge *host;
#endif
if (NVreg_EnableResizableBar == 0)
{
nv_printf(NV_DBG_INFO, "NVRM: resizable BAR disabled by regkey, skipping\n");
return 0;
}
// Check if BAR1 has PCIe rebar capabilities
sizes = pci_rebar_get_possible_sizes(pci_dev, NV_GPU_BAR1);
if (sizes == 0) {
/* ReBAR not available. Nothing to do. */
return 0;
}
/* Try to resize the BAR to the largest supported size */
requested_size = fls(sizes) - 1;
/* Save the current size, just in case things go wrong */
old_size = pci_rebar_bytes_to_size(pci_resource_len(pci_dev, NV_GPU_BAR1));
if (old_size == requested_size) {
nv_printf(NV_DBG_INFO, "NVRM: %04x:%02x:%02x.%x: BAR1 already at requested size.\n",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
return 0;
}
#if NV_IS_EXPORT_SYMBOL_PRESENT_pci_find_host_bridge
/* If the kernel will refuse us, don't even try to resize,
but give an informative error */
host = pci_find_host_bridge(pci_dev->bus);
if (host->preserve_config) {
nv_printf(NV_DBG_INFO, "NVRM: Not resizing BAR because the firmware forbids moving windows.\n");
return 0;
}
#endif
nv_printf(NV_DBG_INFO, "NVRM: %04x:%02x:%02x.%x: Attempting to resize BAR1.\n",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
/* Disable memory decoding - required by the kernel APIs */
pci_read_config_word(pci_dev, PCI_COMMAND, &cmd);
pci_write_config_word(pci_dev, PCI_COMMAND, cmd & ~PCI_COMMAND_MEMORY);
/* Release BAR1 */
pci_release_resource(pci_dev, NV_GPU_BAR1);
/* Release BAR3 - we don't want to resize it, it's in the same bridge, so we'll want to move it */
pci_release_resource(pci_dev, NV_GPU_BAR3);
resize:
/* Attempt to resize BAR1 to the largest supported size */
r = pci_resize_resource(pci_dev, NV_GPU_BAR1, requested_size);
if (r) {
if (r == -ENOSPC)
{
/* step through smaller sizes down to original size */
if (requested_size > old_size)
{
clear_bit(fls(sizes) - 1, &sizes);
requested_size = fls(sizes) - 1;
goto resize;
}
else
{
nv_printf(NV_DBG_ERRORS, "NVRM: No address space to allocate resized BAR1.\n");
}
}
else if (r == -EOPNOTSUPP)
{
nv_printf(NV_DBG_WARNINGS, "NVRM: BAR resize resource not supported.\n");
}
else
{
nv_printf(NV_DBG_WARNINGS, "NVRM: BAR resizing failed with error `%d`.\n", r);
}
}
/* Re-attempt assignment of PCIe resources */
pci_assign_unassigned_bus_resources(pci_dev->bus);
if ((pci_resource_flags(pci_dev, NV_GPU_BAR1) & IORESOURCE_UNSET) ||
(pci_resource_flags(pci_dev, NV_GPU_BAR3) & IORESOURCE_UNSET)) {
if (requested_size != old_size) {
/* Try to get the BAR back with the original size */
requested_size = old_size;
goto resize;
}
/* Something went horribly wrong and the kernel didn't manage to re-allocate BAR1.
This is unlikely (because we had space before), but can happen. */
nv_printf(NV_DBG_ERRORS, "NVRM: FATAL: Failed to re-allocate BAR1.\n");
ret = -ENODEV;
}
/* Re-enable memory decoding */
pci_write_config_word(pci_dev, PCI_COMMAND, cmd);
return ret;
#else
nv_printf(NV_DBG_INFO, "NVRM: Resizable BAR is not supported on this kernel version.\n");
return 0;
#endif /* NV_PCI_REBAR_GET_POSSIBLE_SIZES_PRESENT */
}
#if defined(CONFIG_ACPI_NUMA) && NV_IS_EXPORT_SYMBOL_PRESENT_pxm_to_node
/*
* Parse the SRAT table to look for numa node associated with the GPU.
*
* find_gpu_numa_nodes_in_srat() is strongly associated with
* nv_init_coherent_link_info(). Hence matching the conditions wrapping.
*/
static NvU32 find_gpu_numa_nodes_in_srat(nv_linux_state_t *nvl)
{
NvU32 gi_dbdf, dev_dbdf, pxm_count = 0;
struct acpi_table_header *table_header;
struct acpi_subtable_header *subtable_header;
unsigned long table_end, subtable_header_length;
struct acpi_srat_generic_affinity *gi;
NvU32 numa_node = NUMA_NO_NODE;
if (NV_PCI_DEVFN(nvl->pci_dev) != 0)
{
nv_printf(NV_DBG_ERRORS, "NVRM: Failing to parse SRAT GI for %04x:%02x:%02x.%x "
"since non-zero device function is not supported.\n",
NV_PCI_DOMAIN_NUMBER(nvl->pci_dev), NV_PCI_BUS_NUMBER(nvl->pci_dev),
NV_PCI_SLOT_NUMBER(nvl->pci_dev), PCI_FUNC(nvl->pci_dev->devfn));
return 0;
}
if (acpi_get_table(ACPI_SIG_SRAT, 0, &table_header)) {
nv_printf(NV_DBG_INFO, "NVRM: Failed to parse the SRAT table.\n");
return 0;
}
table_end = (unsigned long)table_header + table_header->length;
subtable_header = (struct acpi_subtable_header *)
((unsigned long)table_header + sizeof(struct acpi_table_srat));
subtable_header_length = subtable_header->length;
dev_dbdf = NV_PCI_DOMAIN_NUMBER(nvl->pci_dev) << 16 |
NV_PCI_BUS_NUMBER(nvl->pci_dev) << 8 |
NV_PCI_DEVFN(nvl->pci_dev);
/*
* On baremetal and passthrough, there could be upto 8 generic initiators.
* This is not a hack as a device can have any number of initiators hardware
* supports.
*/
while (subtable_header_length &&
(((unsigned long)subtable_header) + subtable_header_length <= table_end)) {
if (subtable_header->type == ACPI_SRAT_TYPE_GENERIC_AFFINITY) {
NvU8 busAtByte2, busAtByte3;
gi = (struct acpi_srat_generic_affinity *) subtable_header;
busAtByte2 = gi->device_handle[2];
busAtByte3 = gi->device_handle[3];
// Device and function should be zero enforced by above check
gi_dbdf = *((NvU16 *)(&gi->device_handle[0])) << 16 |
(busAtByte2 != 0 ? busAtByte2 : busAtByte3) << 8;
if (gi_dbdf == dev_dbdf) {
numa_node = pxm_to_node(gi->proximity_domain);
if (numa_node < MAX_NUMNODES) {
pxm_count++;
set_bit(numa_node, nvl->coherent_link_info.free_node_bitmap);
}
else {
/* We shouldn't be here. This is a mis-configuration. */
nv_printf(NV_DBG_INFO, "NVRM: Invalid node-id found.\n");
pxm_count = 0;
goto exit;
}
nv_printf(NV_DBG_INFO,
"NVRM: matching SRAT GI entry: 0x%x 0x%x 0x%x 0x%x PXM: %d\n",
gi->device_handle[3],
gi->device_handle[2],
gi->device_handle[1],
gi->device_handle[0],
gi->proximity_domain);
if ((busAtByte2) == 0 &&
(busAtByte3) != 0)
{
/*
* TODO: Remove this WAR once Hypervisor stack is updated
* to fix this bug and after all CSPs have moved to using
* the updated Hypervisor stack with fix.
*/
nv_printf(NV_DBG_WARNINGS,
"NVRM: PCIe bus value picked from byte 3 offset in SRAT GI entry: 0x%x 0x%x 0x%x 0x%x PXM: %d\n"
"NVRM: Hypervisor stack is old and not following ACPI spec defined offset.\n"
"NVRM: Please consider upgrading the Hypervisor stack as this workaround will be removed in future release.\n",
gi->device_handle[3],
gi->device_handle[2],
gi->device_handle[1],
gi->device_handle[0],
gi->proximity_domain);
}
}
}
subtable_header = (struct acpi_subtable_header *)
((unsigned long) subtable_header + subtable_header_length);
subtable_header_length = subtable_header->length;
}
exit:
acpi_put_table(table_header);
return pxm_count;
}
#endif // defined(CONFIG_ACPI_NUMA) && NV_IS_EXPORT_SYMBOL_PRESENT_pxm_to_node
static void
nv_init_coherent_link_info
(
nv_state_t *nv
)
{
#if defined(CONFIG_ACPI_NUMA) && NV_IS_EXPORT_SYMBOL_PRESENT_pxm_to_node
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
NvU64 pa = 0;
NvU64 pxm_start = 0;
NvU64 pxm_count = 0;
NvU32 pxm;
NvU32 gi_found = 0, node;
if (!NVCPU_IS_AARCH64)
return;
if (!dev_is_pci(nvl->dev))
return;
gi_found = find_gpu_numa_nodes_in_srat(nvl);
if (!gi_found &&
(device_property_read_u64(nvl->dev, "nvidia,gpu-mem-pxm-start", &pxm_start) != 0 ||
device_property_read_u64(nvl->dev, "nvidia,gpu-mem-pxm-count", &pxm_count) != 0))
goto failed;
if (device_property_read_u64(nvl->dev, "nvidia,gpu-mem-base-pa", &pa) == 0)
{
nvl->coherent_link_info.gpu_mem_pa = pa;
}
else
{
unsigned int gpu_bar1_offset, gpu_bar2_offset;
/*
* This implies that the DSD key for PXM start and count is present
* while the one for Physical Address (PA) is absent.
*/
if (nv_get_hypervisor_type() == OS_HYPERVISOR_UNKNOWN)
{
/* Fail for the baremetal case */
goto failed;
}
/*
* For the virtualization usecase on SHH, the coherent GPU memory
* PA is exposed as BAR2 to the VM and the "nvidia,gpu-mem-base-pa"
* is not present. Set the GPU memory PA to the BAR2 start address.
*
* In the case of passthrough, reserved memory portion of the coherent
* GPU memory is exposed as BAR1
*/
/*
* Hopper+ uses 64-bit BARs, so GPU BAR2 should be at BAR4/5 and
* GPU BAR1 is at BAR2/3
*/
gpu_bar1_offset = 2;
gpu_bar2_offset = 4;
/*
* cannot use nv->bars[] here as it is not populated correctly if BAR1 is
* not present but BAR2 is, even though PCIe spec allows it. Not fixing
* nv->bars[] since this is not a valid scenario with the actual HW and
* possible only with this host emulated BAR scenario.
*/
if (!((NV_PCI_RESOURCE_VALID(nvl->pci_dev, gpu_bar2_offset)) &&
(NV_PCI_RESOURCE_FLAGS(nvl->pci_dev, gpu_bar2_offset) & PCI_BASE_ADDRESS_SPACE)
== PCI_BASE_ADDRESS_SPACE_MEMORY))
{
// BAR2 contains the cacheable part of the coherent FB region and must have.
goto failed;
}
nvl->coherent_link_info.gpu_mem_pa =
NV_PCI_RESOURCE_START(nvl->pci_dev, gpu_bar2_offset);
if ((pci_devid_is_self_hosted_hopper(nv->pci_info.device_id)) &&
(NV_PCI_RESOURCE_VALID(nvl->pci_dev, gpu_bar1_offset)) &&
(NV_PCI_RESOURCE_FLAGS(nvl->pci_dev, gpu_bar1_offset) & PCI_BASE_ADDRESS_SPACE)
== PCI_BASE_ADDRESS_SPACE_MEMORY)
{
// Present only in passthrough case for self-hosted hopper.
nvl->coherent_link_info.rsvd_mem_pa = NV_PCI_RESOURCE_START(nvl->pci_dev, gpu_bar1_offset);
//
// Unset nv->bars[1] only for self-hosted Hopper as BAR1 in virtualization case
// for hopper is used to convey RM reserved memory information and doesn't contain
// the traditional GPU BAR2. Starting from Blackwell BAR1 will be the real BAR1.
//
memset(&nv->bars[1], 0, sizeof(nv->bars[1]));
}
//
// Unset nv->bars[2] for all self-hosted systems as BAR2 in the virtualization case
// is used only to convey the coherent GPU memory information and doesn't contain
// the traditional GPU BAR2. This is to ensure the coherent FB addresses don't
// inadvertently pass the IS_FB_OFFSET or IS_IMEM_OFFSET checks.
//
memset(&nv->bars[2], 0, sizeof(nv->bars[2]));
}
NV_DEV_PRINTF(NV_DBG_INFO, nv, "DSD properties: \n");
NV_DEV_PRINTF(NV_DBG_INFO, nv, "\tGPU memory PA: 0x%lx \n",
nvl->coherent_link_info.gpu_mem_pa);
if (pci_devid_is_self_hosted_hopper(nv->pci_info.device_id))
{
NV_DEV_PRINTF(NV_DBG_INFO, nv, "\tGPU reserved memory PA: 0x%lx \n",
nvl->coherent_link_info.rsvd_mem_pa);
}
if (!gi_found)
{
for (pxm = pxm_start; pxm < (pxm_start + pxm_count); pxm++)
{
node = pxm_to_node(pxm);
if (node != NUMA_NO_NODE)
{
set_bit(node, nvl->coherent_link_info.free_node_bitmap);
}
}
}
for (node = 0; (node = find_next_bit(nvl->coherent_link_info.free_node_bitmap,
MAX_NUMNODES, node)) != MAX_NUMNODES; node++)
{
NV_DEV_PRINTF(NV_DBG_INFO, nv, "\tNVRM: GPU memory NUMA node: %u\n", node);
}
if (NVreg_EnableUserNUMAManagement && !os_is_vgx_hyper())
{
NV_ATOMIC_SET(nvl->numa_info.status, NV_IOCTL_NUMA_STATUS_OFFLINE);
nvl->numa_info.use_auto_online = NV_TRUE;
if (!bitmap_empty(nvl->coherent_link_info.free_node_bitmap, MAX_NUMNODES))
{
nvl->numa_info.node_id = find_first_bit(nvl->coherent_link_info.free_node_bitmap, MAX_NUMNODES);
}
NV_DEV_PRINTF(NV_DBG_SETUP, nv, "GPU NUMA information: node id: %u PA: 0x%llx\n",
nvl->numa_info.node_id, nvl->coherent_link_info.gpu_mem_pa);
}
else
{
NV_DEV_PRINTF(NV_DBG_SETUP, nv, "User-mode NUMA onlining disabled.\n");
}
return;
failed:
NV_DEV_PRINTF(NV_DBG_SETUP, nv, "Cannot get coherent link info.\n");
#endif // defined(CONFIG_ACPI_NUMA) && NV_IS_EXPORT_SYMBOL_PRESENT_pxm_to_node
return;
}
#if defined(CONFIG_PM_DEVFREQ)
#define to_tegra_devfreq_dev(x) \
container_of(x, struct nv_pci_tegra_devfreq_dev, dev)
struct nv_pci_tegra_devfreq_data {
const char *clk_name;
const char *icc_name;
const unsigned int gpc_fuse_field;
const TEGRASOC_DEVFREQ_CLK devfreq_clk;
};
struct nv_pci_tegra_devfreq_dev {
TEGRASOC_DEVFREQ_CLK devfreq_clk;
int domain;
struct device dev;
struct list_head gpc_cluster;
struct list_head nvd_cluster;
struct nv_pci_tegra_devfreq_dev *gpc_master;
struct nv_pci_tegra_devfreq_dev *nvd_master;
struct clk *clk;
struct devfreq *devfreq;
#if NV_HAS_ICC_SUPPORTED
struct icc_path *icc_path;
#endif
};
static const struct nv_pci_tegra_devfreq_data gb10b_tegra_devfreq_table[] = {
{
.clk_name = "gpc0clk",
.icc_name = "gpu-write",
.gpc_fuse_field = BIT(0),
.devfreq_clk = TEGRASOC_DEVFREQ_CLK_GPC,
},
{
.clk_name = "gpc1clk",
.icc_name = "gpu-write",
.gpc_fuse_field = BIT(1),
.devfreq_clk = TEGRASOC_DEVFREQ_CLK_GPC,
},
{
.clk_name = "gpc2clk",
.icc_name = "gpu-write",
.gpc_fuse_field = BIT(2),
.devfreq_clk = TEGRASOC_DEVFREQ_CLK_GPC,
},
{
.clk_name = "nvdclk",
.icc_name = "video-write",
.devfreq_clk = TEGRASOC_DEVFREQ_CLK_NVD,
},
{
.clk_name = "sysclk"
},
{
.clk_name = "uprocclk"
},
};
static void nv_pci_gb10b_device_release(struct device *dev)
{
;
}
static int
nv_pci_gb10b_devfreq_target(struct device *dev, unsigned long *freq, u32 flags)
{
struct pci_dev *pdev = to_pci_dev(dev->parent);
struct nv_pci_tegra_devfreq_dev *tdev = to_tegra_devfreq_dev(dev), *tptr;
unsigned long rate;
#if NV_HAS_ICC_SUPPORTED
static const unsigned num_mss_ports = 8;
static const unsigned mss_port_bandwidth = 32;
static const unsigned gpu_bus_bandwidth = num_mss_ports * mss_port_bandwidth;
u32 kBps;
#endif
//
// When GPU is suspended(railgated), the PM runtime suspend callback should
// suspend all devfreq devices, and devfreq cycle should not be triggered.
//
// However, users are still able to change the devfreq governor from the
// sysfs interface and indirectly invoke the update_devfreq function, which
// will further call the target callback function.
//
// Early stop the process here before clk_set_rate/clk_get_rate, since these
// calls served by BPMP will awake the GPU.
//
if (pm_runtime_suspended(&pdev->dev))
{
return 0;
}
clk_set_rate(tdev->clk, *freq);
*freq = clk_get_rate(tdev->clk);
#if NV_HAS_ICC_SUPPORTED
if (tdev->icc_path != NULL)
{
kBps = Bps_to_icc(*freq * gpu_bus_bandwidth * 400 / 1000);
icc_set_bw(tdev->icc_path, kBps, 0);
}
#endif
rate = 0;
list_for_each_entry(tptr, &tdev->gpc_cluster, gpc_cluster)
{
if (tptr->gpc_master != NULL)
{
rate = max(rate, clk_get_rate(tptr->gpc_master->clk));
}
if (tptr->nvd_master != NULL)
{
rate = max(rate, clk_get_rate(tptr->nvd_master->clk));
}
clk_set_rate(tptr->clk, rate);
}
rate = 0;
list_for_each_entry(tptr, &tdev->nvd_cluster, nvd_cluster)
{
if (tptr->gpc_master != NULL)
{
rate = max(rate, clk_get_rate(tptr->gpc_master->clk));
}
if (tptr->nvd_master != NULL)
{
rate = max(rate, clk_get_rate(tptr->nvd_master->clk));
}
clk_set_rate(tptr->clk, rate);
}
return 0;
}
static int
nv_pci_tegra_devfreq_get_cur_freq(struct device *dev, unsigned long *freq)
{
struct nv_pci_tegra_devfreq_dev *tdev = to_tegra_devfreq_dev(dev);
*freq = clk_get_rate(tdev->clk);
return 0;
}
static int
nv_pci_tegra_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct pci_dev *pdev = to_pci_dev(dev->parent);
nv_linux_state_t *nvl = pci_get_drvdata(pdev);
nv_state_t *nv = NV_STATE_PTR(nvl);
nvidia_stack_t *sp = NULL;
struct nv_pci_tegra_devfreq_dev *tdev = to_tegra_devfreq_dev(dev);
unsigned int load = 0;
int retval = 0;
NV_STATUS status;
//
// When GPU is suspended(railgated), the PM runtime suspend callback should
// suspend all devfreq devices, and devfreq cycle should not be triggered.
//
// However, users are still able to change the devfreq governor from the
// sysfs interface and indirectly invoke the update_devfreq function, which
// will further call the get_dev_status callback function.
//
if (pm_runtime_suspended(&pdev->dev))
{
stat->total_time = 100;
stat->busy_time = 0;
stat->current_frequency = clk_get_rate(tdev->clk);
return 0;
}
retval = nv_kmem_cache_alloc_stack(&sp);
if (retval != 0)
{
dev_warn(&pdev->dev, "fail to nv_kmem_cache_alloc_stack: %d\n", retval);
return -ENOMEM;
}
//
// Fetch the load value in percentage from the specified clock domain. If the
// load information is unavailable, just consider the load as 100% so that the
// devfreq core will scale the underlying clock to Fmax to prevent any
// performance drop.
//
status = rm_pmu_perfmon_get_load(sp, nv, &load, tdev->devfreq_clk);
if (status != NV_OK)
{
load = 100;
}
// Load calculation equals to (busy_time / total_time) in devfreq governors
// and devfreq governors expect total_time and busy_time in the same unit
stat->total_time = 100;
stat->busy_time = load;
stat->current_frequency = clk_get_rate(tdev->clk);
nv_kmem_cache_free_stack(sp);
return retval;
}
static void
populate_opp_table(struct nv_pci_tegra_devfreq_dev *tdev)
{
unsigned long max_rate, min_rate, step, rate;
long val;
/* Get the max rate of the clock */
val = clk_round_rate(tdev->clk, ULONG_MAX);
max_rate = (val < 0) ? ULONG_MAX : (unsigned long)val;
/* Get the min rate of the clock */
val = clk_round_rate(tdev->clk, 0);
min_rate = (val < 0) ? ULONG_MAX : (unsigned long)val;
/* Get the step size of the clock */
step = (min_rate == ULONG_MAX) ? ULONG_MAX : (min_rate + 1);
val = clk_round_rate(tdev->clk, step);
if ((val < 0) || (val < min_rate))
{
step = 0;
}
else
{
step = (unsigned long)val - min_rate;
}
/* Create the OPP table */
rate = min_rate;
do {
dev_pm_opp_add(&tdev->dev, rate, 0);
rate += step;
} while (rate <= max_rate && step);
}
static int
nv_pci_gb10b_add_devfreq_device(struct nv_pci_tegra_devfreq_dev *tdev)
{
struct devfreq_dev_profile *profile;
populate_opp_table(tdev);
profile = devm_kzalloc(&tdev->dev, sizeof(*profile), GFP_KERNEL);
if (profile == NULL)
{
return -ENOMEM;
}
profile->target = nv_pci_gb10b_devfreq_target;
profile->get_cur_freq = nv_pci_tegra_devfreq_get_cur_freq;
profile->get_dev_status = nv_pci_tegra_devfreq_get_dev_status;
profile->initial_freq = clk_get_rate(tdev->clk);
profile->polling_ms = 25;
tdev->devfreq = devm_devfreq_add_device(&tdev->dev,
profile,
DEVFREQ_GOV_PERFORMANCE,
NULL);
if (IS_ERR(tdev->devfreq))
{
return PTR_ERR(tdev->devfreq);
}
return 0;
}
static int
nv_pci_gb10b_register_devfreq(struct pci_dev *pdev)
{
nv_linux_state_t *nvl = pci_get_drvdata(pdev);
nv_state_t *nv = NV_STATE_PTR(nvl);
struct pci_bus *pbus = pdev->bus;
const struct nv_pci_tegra_devfreq_data *tdata;
struct nv_pci_tegra_devfreq_dev *tdev;
#if NV_HAS_ICC_SUPPORTED
struct icc_path *icc_path;
#endif
struct clk *clk;
resource_size_t bar0_addr, bar0_size;
void *bar0_map;
int i, err, node;
u32 gpc_fuse_mask;
while (pbus->parent != NULL)
{
pbus = pbus->parent;
}
node = max(0, dev_to_node(to_pci_host_bridge(pbus->bridge)->dev.parent));
bar0_addr = (resource_size_t)nv->bars[NV_GPU_BAR_INDEX_REGS].cpu_address;
bar0_size = (resource_size_t)nv->bars[NV_GPU_BAR_INDEX_REGS].size;
bar0_map = devm_ioremap(&pdev->dev, bar0_addr, bar0_size);
if (bar0_map == NULL)
{
gpc_fuse_mask = 0;
}
else
{
#define NV_FUSE_STATUS_OPT_GPC 0x00820c1c
gpc_fuse_mask = readl(bar0_map + NV_FUSE_STATUS_OPT_GPC);
}
for (i = 0; i < nvl->devfreq_table_size; i++)
{
tdata = &nvl->devfreq_table[i];
if (gpc_fuse_mask && (gpc_fuse_mask & tdata->gpc_fuse_field))
{
continue;
}
#if NV_HAS_ICC_SUPPORTED
if (tdata->icc_name != NULL)
{
icc_path = devm_of_icc_get(&pdev->dev, tdata->icc_name);
if (IS_ERR_OR_NULL(icc_path))
{
icc_path = NULL;
}
}
#endif
clk = devm_clk_get(&pdev->dev, tdata->clk_name);
if (IS_ERR_OR_NULL(clk))
{
continue;
}
tdev = devm_kzalloc(&pdev->dev, sizeof(*tdev), GFP_KERNEL);
if (tdev == NULL)
{
return -ENOMEM;
}
INIT_LIST_HEAD(&tdev->gpc_cluster);
INIT_LIST_HEAD(&tdev->nvd_cluster);
#if NV_HAS_ICC_SUPPORTED
tdev->icc_path = icc_path;
#endif
tdev->clk = clk;
tdev->domain = node;
tdev->devfreq_clk = tdata->devfreq_clk;
tdev->dev.parent = &pdev->dev;
tdev->dev.release = nv_pci_gb10b_device_release;
dev_set_name(&tdev->dev, "%s-%d", tdata->clk_name, node);
if (strstr(tdata->clk_name, "gpc"))
{
if (nvl->gpc_devfreq_dev != NULL)
{
list_add_tail(&tdev->gpc_cluster, &nvl->gpc_devfreq_dev->gpc_cluster);
tdev->gpc_master = nvl->gpc_devfreq_dev;
}
else
{
nvl->gpc_devfreq_dev = tdev;
dev_set_name(&tdev->dev, "gpu-gpc-%d", node);
}
}
else if (strstr(tdata->clk_name, "nvd"))
{
nvl->nvd_devfreq_dev = tdev;
dev_set_name(&tdev->dev, "gpu-nvd-%d", node);
}
else if (strstr(tdata->clk_name, "sys"))
{
nvl->sys_devfreq_dev = tdev;
dev_set_name(&tdev->dev, "gpu-sys-%d", node);
}
else if (strstr(tdata->clk_name, "uproc"))
{
nvl->pwr_devfreq_dev = tdev;
dev_set_name(&tdev->dev, "gpu-pwr-%d", node);
}
err = device_register(&tdev->dev);
if (err != 0)
{
goto error_return;
}
}
if (nvl->gpc_devfreq_dev != NULL)
{
err = nv_pci_gb10b_add_devfreq_device(nvl->gpc_devfreq_dev);
if (err != 0)
{
goto error_return;
}
if (nvl->sys_devfreq_dev != NULL)
{
list_add_tail(&nvl->sys_devfreq_dev->gpc_cluster, &nvl->gpc_devfreq_dev->gpc_cluster);
nvl->sys_devfreq_dev->gpc_master = nvl->gpc_devfreq_dev;
}
if (nvl->pwr_devfreq_dev != NULL)
{
list_add_tail(&nvl->pwr_devfreq_dev->gpc_cluster, &nvl->gpc_devfreq_dev->gpc_cluster);
nvl->pwr_devfreq_dev->gpc_master = nvl->gpc_devfreq_dev;
}
}
if (nvl->nvd_devfreq_dev != NULL)
{
err = nv_pci_gb10b_add_devfreq_device(nvl->nvd_devfreq_dev);
if (err != 0)
{
goto error_return;
}
if (nvl->sys_devfreq_dev != NULL)
{
list_add_tail(&nvl->sys_devfreq_dev->nvd_cluster, &nvl->nvd_devfreq_dev->nvd_cluster);
nvl->sys_devfreq_dev->nvd_master = nvl->nvd_devfreq_dev;
}
if (nvl->pwr_devfreq_dev != NULL)
{
list_add_tail(&nvl->pwr_devfreq_dev->nvd_cluster, &nvl->nvd_devfreq_dev->nvd_cluster);
nvl->pwr_devfreq_dev->nvd_master = nvl->nvd_devfreq_dev;
}
}
return 0;
error_return:
/* The caller will call unregister to unwind on failure */
return err;
}
static int
nv_pci_gb10b_suspend_devfreq(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
nv_linux_state_t *nvl = pci_get_drvdata(pci_dev);
int err = 0;
if (nvl->gpc_devfreq_dev != NULL && nvl->gpc_devfreq_dev->devfreq != NULL)
{
err = devfreq_suspend_device(nvl->gpc_devfreq_dev->devfreq);
if (err)
{
return err;
}
#if NV_HAS_ICC_SUPPORTED
if (nvl->gpc_devfreq_dev->icc_path != NULL)
{
icc_set_bw(nvl->gpc_devfreq_dev->icc_path, 0, 0);
}
#endif
}
if (nvl->nvd_devfreq_dev != NULL && nvl->nvd_devfreq_dev->devfreq != NULL)
{
err = devfreq_suspend_device(nvl->nvd_devfreq_dev->devfreq);
if (err)
{
return err;
}
#if NV_HAS_ICC_SUPPORTED
if (nvl->nvd_devfreq_dev->icc_path != NULL)
{
icc_set_bw(nvl->nvd_devfreq_dev->icc_path, 0, 0);
}
#endif
}
return err;
}
static int
nv_pci_gb10b_resume_devfreq(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
nv_linux_state_t *nvl = pci_get_drvdata(pci_dev);
int err = 0;
if (nvl->gpc_devfreq_dev != NULL && nvl->gpc_devfreq_dev->devfreq != NULL)
{
err = devfreq_resume_device(nvl->gpc_devfreq_dev->devfreq);
if (err)
{
return err;
}
}
if (nvl->nvd_devfreq_dev != NULL && nvl->nvd_devfreq_dev->devfreq != NULL)
{
err = devfreq_resume_device(nvl->nvd_devfreq_dev->devfreq);
if (err)
{
return err;
}
}
return err;
}
struct nv_pci_tegra_data {
unsigned short vendor;
unsigned short device;
const struct nv_pci_tegra_devfreq_data *devfreq_table;
unsigned int devfreq_table_size;
int (*devfreq_register)(struct pci_dev*);
int (*devfreq_suspend)(struct device*);
int (*devfreq_resume)(struct device*);
};
static const struct nv_pci_tegra_data nv_pci_tegra_table[] = {
{
.vendor = 0x10de,
.device = 0x2b00,
.devfreq_table = gb10b_tegra_devfreq_table,
.devfreq_table_size = ARRAY_SIZE(gb10b_tegra_devfreq_table),
.devfreq_register = nv_pci_gb10b_register_devfreq,
.devfreq_suspend = nv_pci_gb10b_suspend_devfreq,
.devfreq_resume = nv_pci_gb10b_resume_devfreq,
},
};
static void
nv_pci_tegra_devfreq_remove_opps(struct nv_pci_tegra_devfreq_dev *tdev)
{
#if defined(NV_DEVFREQ_HAS_FREQ_TABLE)
unsigned long *freq_table = tdev->devfreq->freq_table;
unsigned int max_state = tdev->devfreq->max_state;
#else
unsigned long *freq_table = tdev->devfreq->profile->freq_table;
unsigned int max_state = tdev->devfreq->profile->max_state;
#endif
int i;
for (i = 0; i < max_state; i++)
{
dev_pm_opp_remove(&tdev->dev, freq_table[i]);
}
}
static void
nv_pci_tegra_devfreq_remove(struct nv_pci_tegra_devfreq_dev *tdev)
{
struct nv_pci_tegra_devfreq_dev *tptr;
nv_pci_tegra_devfreq_remove_opps(tdev);
devm_devfreq_remove_device(&tdev->dev, tdev->devfreq);
tdev->devfreq = NULL;
#if NV_HAS_ICC_SUPPORTED
if (tdev->icc_path != NULL)
{
icc_set_bw(tdev->icc_path, 0, 0);
}
#endif
list_for_each_entry(tptr, &tdev->gpc_cluster, gpc_cluster)
{
if (tptr->clk != NULL)
{
devm_clk_put(tdev->dev.parent, tptr->clk);
tptr->clk = NULL;
device_unregister(&tptr->dev);
}
}
list_for_each_entry(tptr, &tdev->nvd_cluster, nvd_cluster)
{
if (tptr->clk != NULL)
{
devm_clk_put(tdev->dev.parent, tptr->clk);
tptr->clk = NULL;
device_unregister(&tptr->dev);
}
}
if (tdev->clk != NULL)
{
devm_clk_put(tdev->dev.parent, tptr->clk);
tdev->clk = NULL;
device_unregister(&tdev->dev);
}
}
static void
nv_pci_tegra_unregister_devfreq(struct pci_dev *pdev)
{
nv_linux_state_t *nvl = pci_get_drvdata(pdev);
if (nvl->gpc_devfreq_dev != NULL)
{
nv_pci_tegra_devfreq_remove(nvl->gpc_devfreq_dev);
nvl->gpc_devfreq_dev = NULL;
}
if (nvl->nvd_devfreq_dev != NULL)
{
nv_pci_tegra_devfreq_remove(nvl->nvd_devfreq_dev);
nvl->nvd_devfreq_dev = NULL;
}
}
static const struct nv_pci_tegra_data*
nv_pci_get_tegra_igpu_data(struct pci_dev *pdev)
{
const struct nv_pci_tegra_data *tegra_data = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(nv_pci_tegra_table); i++)
{
tegra_data = &nv_pci_tegra_table[i];
if ((tegra_data->vendor == pdev->vendor)
&& (tegra_data->device == pdev->device))
{
return tegra_data;
}
}
return NULL;
}
static int
nv_pci_tegra_register_devfreq(struct pci_dev *pdev)
{
nv_linux_state_t *nvl = pci_get_drvdata(pdev);
const struct nv_pci_tegra_data *tegra_data = NULL;
int err;
tegra_data = nv_pci_get_tegra_igpu_data(pdev);
if (tegra_data == NULL)
{
return 0;
}
nvl->devfreq_table = tegra_data->devfreq_table;
nvl->devfreq_table_size = tegra_data->devfreq_table_size;
nvl->devfreq_suspend = tegra_data->devfreq_suspend;
nvl->devfreq_resume = tegra_data->devfreq_resume;
err = tegra_data->devfreq_register(pdev);
if (err != 0)
{
nv_pci_tegra_unregister_devfreq(pdev);
return err;
}
return 0;
}
#endif
static void nv_init_dynamic_power_management
(
nvidia_stack_t *sp,
struct pci_dev *pci_dev
)
{
nv_linux_state_t *nvl = pci_get_drvdata(pci_dev);
nv_state_t *nv = NV_STATE_PTR(nvl);
NvBool pr3_acpi_method_present = NV_FALSE;
nvl->sysfs_config_file = NULL;
nv_get_pci_sysfs_config(pci_dev, nvl);
if (nv_get_hypervisor_type() != OS_HYPERVISOR_UNKNOWN)
{
pr3_acpi_method_present = nv_acpi_power_resource_method_present(pci_dev);
}
else if (pci_dev->bus && pci_dev->bus->self)
{
pr3_acpi_method_present = nv_acpi_power_resource_method_present(pci_dev->bus->self);
}
// Support dynamic power management if device is a tegra PCI iGPU
rm_init_tegra_dynamic_power_management(sp, nv);
rm_init_dynamic_power_management(sp, nv, pr3_acpi_method_present);
}
static NvBool
nv_pci_validate_bars(const struct pci_dev *pci_dev, NvBool only_bar0)
{
unsigned int i, j;
NvBool last_bar_64bit = NV_FALSE;
for (i = 0, j = 0; i < NVRM_PCICFG_NUM_BARS && j < NV_GPU_NUM_BARS; i++)
{
if (NV_PCI_RESOURCE_VALID(pci_dev, i))
{
if ((NV_PCI_RESOURCE_FLAGS(pci_dev, i) & PCI_BASE_ADDRESS_MEM_TYPE_64) &&
(NV_PCI_RESOURCE_FLAGS(pci_dev, i) & PCI_BASE_ADDRESS_MEM_PREFETCH))
{
last_bar_64bit = NV_TRUE;
}
//
// If we are here, then we have found a valid BAR -- 32 or 64-bit.
//
j++;
if (only_bar0)
return NV_TRUE;
continue;
}
//
// If last_bar_64bit is "true" then, we are looking at the 2nd (upper)
// half of the 64-bit BAR. This is typically all 0s which looks invalid
// but it's normal and not a problem and we can ignore it and continue.
//
if (last_bar_64bit)
{
last_bar_64bit = NV_FALSE;
continue;
}
// Invalid 32 or 64-bit BAR.
nv_printf(NV_DBG_ERRORS,
"NVRM: This PCI I/O region assigned to your NVIDIA device is invalid:\n"
"NVRM: BAR%d is %" NvU64_fmtu "M @ 0x%" NvU64_fmtx " (PCI:%04x:%02x:%02x.%x)\n", i,
(NvU64)(NV_PCI_RESOURCE_SIZE(pci_dev, i) >> 20),
(NvU64)NV_PCI_RESOURCE_START(pci_dev, i),
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
return NV_FALSE;
}
return NV_TRUE;
}
/* find nvidia devices and set initial state */
static int
nv_pci_probe
(
struct pci_dev *pci_dev,
const struct pci_device_id *id_table
)
{
nv_state_t *nv = NULL;
nv_linux_state_t *nvl = NULL;
unsigned int i, j;
int flags = 0;
nvidia_stack_t *sp = NULL;
NvBool prev_nv_ats_supported = nv_ats_supported;
NV_STATUS status;
NvU8 regs_bar_index = nv_bar_index_to_os_bar_index(pci_dev,
NV_GPU_BAR_INDEX_REGS);
NvBool bar0_requested = NV_FALSE;
nv_printf(NV_DBG_SETUP, "NVRM: probing 0x%x 0x%x, class 0x%x\n",
pci_dev->vendor, pci_dev->device, pci_dev->class);
if (nv_kmem_cache_alloc_stack(&sp) != 0)
{
return -1;
}
#ifdef NV_PCI_SRIOV_SUPPORT
if (pci_dev->is_virtfn)
{
#if defined(NV_VGPU_KVM_BUILD)
#if defined(NV_BUS_TYPE_HAS_IOMMU_OPS)
if (pci_dev->dev.bus->iommu_ops == NULL)
#else
if ((pci_dev->dev.iommu != NULL) && (pci_dev->dev.iommu->iommu_dev != NULL) &&
(pci_dev->dev.iommu->iommu_dev->ops == NULL))
#endif
{
nv_printf(NV_DBG_ERRORS, "NVRM: Aborting probe for VF %04x:%02x:%02x.%x "
"since IOMMU is not present on the system.\n",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
goto failed;
}
nv_kmem_cache_free_stack(sp);
return 0;
#else
nv_printf(NV_DBG_ERRORS, "NVRM: Ignoring probe for VF %04x:%02x:%02x.%x ",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
goto failed;
#endif /* NV_VGPU_KVM_BUILD */
}
#endif /* NV_PCI_SRIOV_SUPPORT */
if (!rm_is_supported_pci_device(
(pci_dev->class >> 16) & 0xFF,
(pci_dev->class >> 8) & 0xFF,
pci_dev->vendor,
pci_dev->device,
pci_dev->subsystem_vendor,
pci_dev->subsystem_device,
NV_FALSE /* print_legacy_warning */))
{
nv_printf(NV_DBG_ERRORS, "NVRM: ignoring the legacy GPU %04x:%02x:%02x.%x\n",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
goto failed;
}
num_probed_nv_devices++;
if (pci_enable_device(pci_dev) != 0)
{
nv_printf(NV_DBG_ERRORS,
"NVRM: pci_enable_device failed, aborting\n");
goto failed;
}
if ((pci_dev->irq == 0 && !pci_find_capability(pci_dev, PCI_CAP_ID_MSIX))
&& nv_treat_missing_irq_as_error())
{
nv_printf(NV_DBG_ERRORS, "NVRM: Can't find an IRQ for your NVIDIA card!\n");
nv_printf(NV_DBG_ERRORS, "NVRM: Please check your BIOS settings.\n");
nv_printf(NV_DBG_ERRORS, "NVRM: [Plug & Play OS] should be set to NO\n");
nv_printf(NV_DBG_ERRORS, "NVRM: [Assign IRQ to VGA] should be set to YES \n");
goto failed;
}
// Validate if BAR0 is usable
if (!nv_pci_validate_bars(pci_dev, /* only_bar0 = */ NV_TRUE))
goto failed;
if (!request_mem_region(NV_PCI_RESOURCE_START(pci_dev, regs_bar_index),
NV_PCI_RESOURCE_SIZE(pci_dev, regs_bar_index),
nv_device_name))
{
nv_printf(NV_DBG_ERRORS,
"NVRM: request_mem_region failed for %" NvU64_fmtu "M @ 0x%" NvU64_fmtx ". This can\n"
"NVRM: occur when a driver such as rivatv is loaded and claims\n"
"NVRM: ownership of the device's registers.\n",
(NvU64)(NV_PCI_RESOURCE_SIZE(pci_dev, regs_bar_index) >> 20),
(NvU64)NV_PCI_RESOURCE_START(pci_dev, regs_bar_index));
goto failed;
}
bar0_requested = NV_TRUE;
NV_KZALLOC(nvl, sizeof(nv_linux_state_t));
if (nvl == NULL)
{
nv_printf(NV_DBG_ERRORS, "NVRM: failed to allocate memory\n");
goto err_not_supported;
}
nv = NV_STATE_PTR(nvl);
for (i = 0; i < NVRM_PCICFG_NUM_BARS; i++)
{
if ((NV_PCI_RESOURCE_VALID(pci_dev, i)) &&
(NV_PCI_RESOURCE_FLAGS(pci_dev, i) & PCI_BASE_ADDRESS_SPACE)
== PCI_BASE_ADDRESS_SPACE_MEMORY)
{
nv->bars[NV_GPU_BAR_INDEX_REGS].offset = NVRM_PCICFG_BAR_OFFSET(i);
nv->bars[NV_GPU_BAR_INDEX_REGS].cpu_address = NV_PCI_RESOURCE_START(pci_dev, i);
nv->bars[NV_GPU_BAR_INDEX_REGS].size = NV_PCI_RESOURCE_SIZE(pci_dev, i);
break;
}
}
nv->regs = &nv->bars[NV_GPU_BAR_INDEX_REGS];
pci_set_drvdata(pci_dev, (void *)nvl);
/* default to 32-bit PCI bus address space */
pci_dev->dma_mask = 0xffffffffULL;
nvl->dev = &pci_dev->dev;
nvl->pci_dev = pci_dev;
nvl->dma_dev.dev = nvl->dev;
nv->pci_info.vendor_id = pci_dev->vendor;
nv->pci_info.device_id = pci_dev->device;
nv->subsystem_id = pci_dev->subsystem_device;
nv->subsystem_vendor = pci_dev->subsystem_vendor;
nv->os_state = (void *) nvl;
nv->dma_dev = &nvl->dma_dev;
nv->pci_info.domain = NV_PCI_DOMAIN_NUMBER(pci_dev);
nv->pci_info.bus = NV_PCI_BUS_NUMBER(pci_dev);
nv->pci_info.slot = NV_PCI_SLOT_NUMBER(pci_dev);
nv->handle = pci_dev;
nv->flags |= flags;
if (!nv_lock_init_locks(sp, nv))
{
goto err_not_supported;
}
if ((rm_is_supported_device(sp, nv)) != NV_OK)
goto err_not_supported;
// Wire RM HAL
if (!rm_init_private_state(sp, nv))
{
NV_DEV_PRINTF(NV_DBG_ERRORS, nv, "rm_init_private_state() failed!\n");
goto err_zero_dev;
}
if (!nv->is_tegra_pci_igpu &&
!pci_devid_is_self_hosted(pci_dev->device) &&
!nv_pci_validate_bars(pci_dev, /* only_bar0 = */ NV_FALSE))
goto err_zero_dev;
if (nv_resize_pcie_bars(pci_dev)) {
nv_printf(NV_DBG_ERRORS,
"NVRM: Fatal Error while attempting to resize PCIe BARs.\n");
goto err_zero_dev;
}
nvl->all_mappings_revoked = NV_TRUE;
nvl->safe_to_mmap = NV_TRUE;
nvl->gpu_wakeup_callback_needed = NV_TRUE;
INIT_LIST_HEAD(&nvl->open_files);
if (!nv->is_tegra_pci_igpu)
{
for (i = 0, j = 0; i < NVRM_PCICFG_NUM_BARS && j < NV_GPU_NUM_BARS; i++)
{
if (j == NV_GPU_BAR_INDEX_REGS)
{
j++;
continue;
}
if ((NV_PCI_RESOURCE_VALID(pci_dev, i)) &&
(NV_PCI_RESOURCE_FLAGS(pci_dev, i) & PCI_BASE_ADDRESS_SPACE)
== PCI_BASE_ADDRESS_SPACE_MEMORY)
{
nv->bars[j].offset = NVRM_PCICFG_BAR_OFFSET(i);
nv->bars[j].cpu_address = NV_PCI_RESOURCE_START(pci_dev, i);
nv->bars[j].size = NV_PCI_RESOURCE_SIZE(pci_dev, i);
j++;
}
}
}
nv->fb = &nv->bars[NV_GPU_BAR_INDEX_FB];
nv->interrupt_line = pci_dev->irq;
NV_ATOMIC_SET(nvl->numa_info.status, NV_IOCTL_NUMA_STATUS_DISABLED);
nvl->numa_info.node_id = NUMA_NO_NODE;
#if NV_IS_EXPORT_SYMBOL_GPL_pci_ats_supported
nv->ats_support = pci_ats_supported(nvl->pci_dev);
#else
nv->ats_support = nvl->pci_dev->ats_enabled;
#endif
if (nv->ats_support)
{
int ret __attribute__ ((unused));
NV_DEV_PRINTF(NV_DBG_INFO, nv, "ATS supported by this GPU!\n");
#if NV_IS_EXPORT_SYMBOL_GPL_iommu_dev_enable_feature
#if defined(CONFIG_IOMMU_SVA) && \
(defined(NV_IOASID_GET_PRESENT) || defined(NV_MM_PASID_DROP_PRESENT))
ret = iommu_dev_enable_feature(nvl->dev, IOMMU_DEV_FEAT_SVA);
if (ret == 0)
{
NV_DEV_PRINTF(NV_DBG_INFO, nv, "Enabled SMMU SVA feature! \n");
}
else if (ret == -EBUSY)
{
NV_DEV_PRINTF(NV_DBG_INFO, nv, "SMMU SVA feature already enabled!\n");
}
else
{
NV_DEV_PRINTF(NV_DBG_ERRORS, nv,
"Enabling SMMU SVA feature failed! ret: %d\n", ret);
nv->ats_support = NV_FALSE;
}
#endif
#endif // NV_IS_EXPORT_SYMBOL_GPL_iommu_dev_enable_feature
}
if (pci_devid_is_self_hosted(pci_dev->device))
{
nv_init_coherent_link_info(nv);
}
nv_ats_supported |= nv->ats_support;
nv_clk_get_handles(nv);
pci_set_master(pci_dev);
#if defined(CONFIG_VGA_ARB)
#if defined(VGA_DEFAULT_DEVICE)
#if defined(NV_VGA_TRYGET_PRESENT)
vga_tryget(VGA_DEFAULT_DEVICE, VGA_RSRC_LEGACY_MASK);
#endif
#endif
vga_set_legacy_decoding(pci_dev, VGA_RSRC_NONE);
#endif
status = nv_check_gpu_state(nv);
if (status == NV_ERR_GPU_IS_LOST)
{
NV_DEV_PRINTF(NV_DBG_INFO, nv, "GPU is lost, skipping nv_pci_probe\n");
goto err_gpu_lost;
}
nv->cpu_numa_node_id = dev_to_node(nvl->dev);
if (nv_linux_init_open_q(nvl) != 0)
{
NV_DEV_PRINTF(NV_DBG_ERRORS, nv, "nv_linux_init_open_q() failed!\n");
goto err_gpu_lost;
}
nv_printf(NV_DBG_INFO,
"NVRM: PCI:%04x:%02x:%02x.%x (%04x:%04x): BAR0 @ 0x%llx (%lluMB)\n",
nv->pci_info.domain, nv->pci_info.bus, nv->pci_info.slot,
PCI_FUNC(pci_dev->devfn), nv->pci_info.vendor_id, nv->pci_info.device_id,
nv->regs->cpu_address, (nv->regs->size >> 20));
nv_printf(NV_DBG_INFO,
"NVRM: PCI:%04x:%02x:%02x.%x (%04x:%04x): BAR1 @ 0x%llx (%lluMB)\n",
nv->pci_info.domain, nv->pci_info.bus, nv->pci_info.slot,
PCI_FUNC(pci_dev->devfn), nv->pci_info.vendor_id, nv->pci_info.device_id,
nv->fb->cpu_address, (nv->fb->size >> 20));
num_nv_devices++;
/*
* The newly created nvl object is added to the nv_linux_devices global list
* only after all the initialization operations for that nvl object are
* completed, so as to protect against simultaneous lookup operations which
* may discover a partially initialized nvl object in the list
*/
LOCK_NV_LINUX_DEVICES();
if (nv_linux_add_device_locked(nvl) != 0)
{
UNLOCK_NV_LINUX_DEVICES();
goto err_add_device;
}
UNLOCK_NV_LINUX_DEVICES();
pm_vt_switch_required(nvl->dev, NV_TRUE);
nv_init_dynamic_power_management(sp, pci_dev);
nv_procfs_add_gpu(nvl);
/* Parse and set any per-GPU registry keys specified. */
nv_parse_per_device_option_string(sp);
rm_set_rm_firmware_requested(sp, nv);
#if defined(NV_VGPU_KVM_BUILD)
if (nvidia_vgpu_vfio_probe(nvl->pci_dev) != NV_OK)
{
NV_DEV_PRINTF(NV_DBG_ERRORS, nv, "Failed to register device to vGPU VFIO module");
goto err_free_all;
}
#endif
nv_check_and_exclude_gpu(sp, nv);
#if defined(DPM_FLAG_NO_DIRECT_COMPLETE)
dev_pm_set_driver_flags(nvl->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
#elif defined(DPM_FLAG_NEVER_SKIP)
dev_pm_set_driver_flags(nvl->dev, DPM_FLAG_NEVER_SKIP);
#endif
#if defined(CONFIG_PM_DEVFREQ)
/*
* Expose clock control interface via devfreq framework for Tegra iGPU and
* let the linux kernel itself to support all the clock scaling logic for
* Tegra iGPU.
*
* On Tegra platforms, most of the clocks are managed by the BPMP. PMU inside
* the iGPU does not have direct communication path to the BPMP, so using
* existing clock management features (e.g. Pstates, PerfCf, and etc) with
* PMU will not work.
*/
if (nv_pci_tegra_register_devfreq(pci_dev) != 0)
{
NV_DEV_PRINTF(NV_DBG_ERRORS, nv, "Failed to register linux devfreq");
goto err_free_all;
};
#endif
/*
* Dynamic power management should be enabled as the last step.
* Kernel runtime power management framework can put the device
* into the suspended state. Hardware register access should not be done
* after enabling dynamic power management.
*/
rm_enable_dynamic_power_management(sp, nv);
/*
* This must be the last action in nv_pci_probe(). Do not add code after this line.
*/
rm_notify_gpu_addition(sp, nv);
nv_kmem_cache_free_stack(sp);
return 0;
goto err_free_all;
err_free_all:
nv_procfs_remove_gpu(nvl);
rm_cleanup_dynamic_power_management(sp, nv);
pm_vt_switch_unregister(nvl->dev);
LOCK_NV_LINUX_DEVICES();
nv_linux_remove_device_locked(nvl);
UNLOCK_NV_LINUX_DEVICES();
err_add_device:
nv_linux_stop_open_q(nvl);
err_gpu_lost:
nv_clk_clear_handles(nv);
nv_ats_supported = prev_nv_ats_supported;
err_zero_dev:
rm_free_private_state(sp, nv);
err_not_supported:
nv_lock_destroy_locks(sp, nv);
failed:
if (bar0_requested)
{
release_mem_region(NV_PCI_RESOURCE_START(pci_dev, regs_bar_index),
NV_PCI_RESOURCE_SIZE(pci_dev, regs_bar_index));
}
NV_PCI_DISABLE_DEVICE(pci_dev);
pci_set_drvdata(pci_dev, NULL);
if (nvl != NULL)
{
NV_KFREE(nvl, sizeof(nv_linux_state_t));
}
nv_kmem_cache_free_stack(sp);
return -1;
}
static void
nv_pci_remove(struct pci_dev *pci_dev)
{
nv_linux_state_t *nvl = NULL;
nv_state_t *nv;
nvidia_stack_t *sp = NULL;
NvU8 regs_bar_index = nv_bar_index_to_os_bar_index(pci_dev,
NV_GPU_BAR_INDEX_REGS);
nv_printf(NV_DBG_SETUP, "NVRM: removing GPU %04x:%02x:%02x.%x\n",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
#ifdef NV_PCI_SRIOV_SUPPORT
if (pci_dev->is_virtfn)
{
#if defined(NV_VGPU_KVM_BUILD)
/* Arg 2 == NV_TRUE means that the PCI device should be removed */
nvidia_vgpu_vfio_remove(pci_dev, NV_TRUE);
#endif /* NV_VGPU_KVM_BUILD */
return;
}
#endif /* NV_PCI_SRIOV_SUPPORT */
if (nv_kmem_cache_alloc_stack(&sp) != 0)
{
return;
}
nvl = pci_get_drvdata(pci_dev);
if (!nvl || (nvl->pci_dev != pci_dev))
{
nv_kmem_cache_free_stack(sp);
return;
}
nv = NV_STATE_PTR(nvl);
#if NV_IS_EXPORT_SYMBOL_GPL_iommu_dev_disable_feature
#if defined(CONFIG_IOMMU_SVA) && \
(defined(NV_IOASID_GET_PRESENT) || defined(NV_MM_PASID_DROP_PRESENT))
if (nv->ats_support)
{
int ret;
ret = iommu_dev_disable_feature(nvl->dev, IOMMU_DEV_FEAT_SVA);
if (ret == 0)
{
NV_DEV_PRINTF(NV_DBG_INFO, nv, "Disabled SMMU SVA feature! \n");
}
else
{
NV_DEV_PRINTF(NV_DBG_ERRORS, nv,
"Disabling SMMU SVA feature failed! ret: %d\n", ret);
}
}
#endif
#endif // NV_IS_EXPORT_SYMBOL_GPL_iommu_dev_disable_feature
/*
* Flush and stop open_q before proceeding with removal to ensure nvl
* outlives all enqueued work items.
*/
nv_linux_stop_open_q(nvl);
LOCK_NV_LINUX_DEVICES();
down(&nvl->ldata_lock);
nv->flags |= NV_FLAG_PCI_REMOVE_IN_PROGRESS;
rm_notify_gpu_removal(sp, nv);
/*
* Sanity check: A removed device shouldn't have a non-zero usage_count.
* For eGPU, fall off the bus along with clients active is a valid scenario.
* Hence skipping the sanity check for eGPU.
*/
if ((NV_ATOMIC_READ(nvl->usage_count) != 0) && !(nv->is_external_gpu))
{
nv_printf(NV_DBG_ERRORS,
"NVRM: Attempting to remove device %04x:%02x:%02x.%x with non-zero usage count!\n",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
/*
* We can't return from this function without corrupting state, so we wait for
* the usage count to go to zero.
*/
while (NV_ATOMIC_READ(nvl->usage_count) != 0)
{
/*
* While waiting, release the locks so that other threads can make
* forward progress.
*/
up(&nvl->ldata_lock);
UNLOCK_NV_LINUX_DEVICES();
os_delay(500);
/* Re-acquire the locks before checking again */
LOCK_NV_LINUX_DEVICES();
nvl = pci_get_drvdata(pci_dev);
if (!nvl)
{
/* The device was not found, which should not happen */
nv_printf(NV_DBG_ERRORS,
"NVRM: Failed removal of device %04x:%02x:%02x.%x!\n",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
WARN_ON(1);
goto done;
}
nv = NV_STATE_PTR(nvl);
down(&nvl->ldata_lock);
}
nv_printf(NV_DBG_ERRORS,
"NVRM: Continuing with GPU removal for device %04x:%02x:%02x.%x\n",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn));
}
rm_check_for_gpu_surprise_removal(sp, nv);
nv_linux_remove_device_locked(nvl);
/* Remove proc entry for this GPU */
nv_procfs_remove_gpu(nvl);
#if defined(CONFIG_PM_DEVFREQ)
nv_pci_tegra_unregister_devfreq(pci_dev);
#endif
nv_clk_clear_handles(nv);
rm_cleanup_dynamic_power_management(sp, nv);
nv->removed = NV_TRUE;
UNLOCK_NV_LINUX_DEVICES();
pm_vt_switch_unregister(&pci_dev->dev);
#if defined(NV_VGPU_KVM_BUILD)
/* Arg 2 == NV_TRUE means that the PCI device should be removed */
nvidia_vgpu_vfio_remove(pci_dev, NV_TRUE);
#endif
if ((nv->flags & NV_FLAG_PERSISTENT_SW_STATE) || (nv->flags & NV_FLAG_OPEN))
{
nv_acpi_unregister_notifier(nvl);
if (nv->flags & NV_FLAG_PERSISTENT_SW_STATE)
{
rm_disable_gpu_state_persistence(sp, nv);
}
nv_shutdown_adapter(sp, nv, nvl);
nv_dev_free_stacks(nvl);
}
if (nvl->sysfs_config_file != NULL)
{
filp_close(nvl->sysfs_config_file, NULL);
nvl->sysfs_config_file = NULL;
}
if (NV_ATOMIC_READ(nvl->usage_count) == 0)
{
nv_lock_destroy_locks(sp, nv);
}
num_probed_nv_devices--;
pci_set_drvdata(pci_dev, NULL);
rm_i2c_remove_adapters(sp, nv);
rm_free_private_state(sp, nv);
release_mem_region(NV_PCI_RESOURCE_START(pci_dev, regs_bar_index),
NV_PCI_RESOURCE_SIZE(pci_dev, regs_bar_index));
num_nv_devices--;
if (NV_ATOMIC_READ(nvl->usage_count) == 0)
{
NV_PCI_DISABLE_DEVICE(pci_dev);
NV_KFREE(nvl, sizeof(nv_linux_state_t));
}
else
{
up(&nvl->ldata_lock);
}
nv_kmem_cache_free_stack(sp);
return;
done:
UNLOCK_NV_LINUX_DEVICES();
nv_kmem_cache_free_stack(sp);
}
static void
nv_pci_shutdown(struct pci_dev *pci_dev)
{
nv_linux_state_t *nvl = pci_get_drvdata(pci_dev);
if ((nvl != NULL) && nvl->is_forced_shutdown)
{
nvl->is_forced_shutdown = NV_FALSE;
return;
}
if (nvl != NULL)
{
nvl->nv_state.is_shutdown = NV_TRUE;
}
/* pci_clear_master is not defined for !CONFIG_PCI */
#ifdef CONFIG_PCI
pci_clear_master(pci_dev);
#endif
/* SHH HW mandates 1us delay to realise the effects of
* Bus Mater Enable(BME) disable. Adding 1us delay for
* all the chips as the delay is not in the data path
* and not big. Creating HAL for this would be a overkill.
*/
udelay(1);
}
/*!
* @brief This function accepts pci information corresponding to a GPU
* and returns a reference to the nv_linux_state_t corresponding to that GPU.
*
* @param[in] domain Pci domain number for the GPU to be found.
* @param[in] bus Pci bus number for the GPU to be found.
* @param[in] slot Pci slot number for the GPU to be found.
* @param[in] function Pci function number for the GPU to be found.
*
* @return Pointer to nv_linux_state_t for the GPU if it is found, or NULL otherwise.
*/
nv_linux_state_t * find_pci(NvU32 domain, NvU8 bus, NvU8 slot, NvU8 function)
{
nv_linux_state_t *nvl = NULL;
LOCK_NV_LINUX_DEVICES();
for (nvl = nv_linux_devices; nvl != NULL; nvl = nvl->next)
{
nv_state_t *nv = NV_STATE_PTR(nvl);
if (nv->pci_info.domain == domain &&
nv->pci_info.bus == bus &&
nv->pci_info.slot == slot &&
nv->pci_info.function == function)
{
break;
}
}
UNLOCK_NV_LINUX_DEVICES();
return nvl;
}
int nvidia_dev_get_pci_info(const NvU8 *uuid, struct pci_dev **pci_dev_out,
NvU64 *dma_start, NvU64 *dma_limit)
{
nv_linux_state_t *nvl;
/* Takes nvl->ldata_lock */
nvl = find_uuid(uuid);
if (!nvl)
return -ENODEV;
*pci_dev_out = nvl->pci_dev;
*dma_start = nvl->dma_dev.addressable_range.start;
*dma_limit = nvl->dma_dev.addressable_range.limit;
up(&nvl->ldata_lock);
return 0;
}
NvU8 nv_find_pci_capability(struct pci_dev *pci_dev, NvU8 capability)
{
u16 status = 0;
u8 cap_ptr = 0, cap_id = 0xff;
pci_read_config_word(pci_dev, PCI_STATUS, &status);
status &= PCI_STATUS_CAP_LIST;
if (!status)
return 0;
switch (pci_dev->hdr_type) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pci_read_config_byte(pci_dev, PCI_CAPABILITY_LIST, &cap_ptr);
break;
default:
return 0;
}
do {
cap_ptr &= 0xfc;
pci_read_config_byte(pci_dev, cap_ptr + PCI_CAP_LIST_ID, &cap_id);
if (cap_id == capability)
return cap_ptr;
pci_read_config_byte(pci_dev, cap_ptr + PCI_CAP_LIST_NEXT, &cap_ptr);
} while (cap_ptr && cap_id != 0xff);
return 0;
}
static void check_for_bound_driver(struct pci_dev *pci_dev)
{
if (pci_dev->dev.driver)
{
const char *driver_name = pci_dev->dev.driver->name;
nv_printf(NV_DBG_WARNINGS, "NVRM: GPU %04x:%02x:%02x.%x is already "
"bound to %s.\n",
NV_PCI_DOMAIN_NUMBER(pci_dev), NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev), PCI_FUNC(pci_dev->devfn),
driver_name ? driver_name : "another driver"
);
}
}
/* make sure the pci_driver called probe for all of our devices.
* we've seen cases where rivafb claims the device first and our driver
* doesn't get called.
*/
int
nv_pci_count_devices(void)
{
struct pci_dev *pci_dev;
int count = 0;
if (NVreg_RegisterPCIDriver == 0)
{
return 0;
}
pci_dev = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, NULL);
while (pci_dev)
{
if (rm_is_supported_pci_device(
PCI_BASE_CLASS_DISPLAY,
PCI_CLASS_DISPLAY_VGA & 0xFF,
pci_dev->vendor,
pci_dev->device,
pci_dev->subsystem_vendor,
pci_dev->subsystem_device,
NV_TRUE /* print_legacy_warning */))
{
check_for_bound_driver(pci_dev);
count++;
}
pci_dev = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, pci_dev);
}
pci_dev = pci_get_class(PCI_CLASS_DISPLAY_3D << 8, NULL);
while (pci_dev)
{
if (rm_is_supported_pci_device(
(pci_dev->class >> 16) & 0xFF,
(pci_dev->class >> 8) & 0xFF,
pci_dev->vendor,
pci_dev->device,
pci_dev->subsystem_vendor,
pci_dev->subsystem_device,
NV_TRUE /* print_legacy_warning */))
{
check_for_bound_driver(pci_dev);
count++;
}
pci_dev = pci_get_class(PCI_CLASS_DISPLAY_3D << 8, pci_dev);
}
return count;
}
/*
* On coherent platforms that support BAR1 mappings for GPUDirect RDMA,
* dma-buf and nv-p2p subsystems need to ensure the 2 devices belong to
* the same IOMMU group.
*/
NvBool nv_pci_is_valid_topology_for_direct_pci(
nv_state_t *nv,
struct pci_dev *peer
)
{
struct pci_dev *pdev0 = to_pci_dev(nv->dma_dev->dev);
struct pci_dev *pdev1 = peer;
if (!nv->coherent)
{
return NV_FALSE;
}
switch (NVreg_GrdmaPciTopoCheckOverride) {
case NV_REG_GRDMA_PCI_TOPO_CHECK_OVERRIDE_ALLOW_ACCESS:
return NV_TRUE;
case NV_REG_GRDMA_PCI_TOPO_CHECK_OVERRIDE_DENY_ACCESS:
return NV_FALSE;
default:
return (pdev0->dev.iommu_group == pdev1->dev.iommu_group);
}
}
NvBool nv_pci_has_common_pci_switch(
nv_state_t *nv,
struct pci_dev *peer
)
{
struct pci_dev *pci_dev0, *pci_dev1;
pci_dev0 = pci_upstream_bridge(to_pci_dev(nv->dma_dev->dev));
while (pci_dev0 != NULL)
{
pci_dev1 = pci_upstream_bridge(peer);
while (pci_dev1 != NULL)
{
if (pci_dev0 == pci_dev1)
return NV_TRUE;
pci_dev1 = pci_upstream_bridge(pci_dev1);
}
pci_dev0 = pci_upstream_bridge(pci_dev0);
}
return NV_FALSE;
}
NvBool NV_API_CALL nv_grdma_pci_topology_supported(
nv_state_t *nv,
nv_dma_device_t *dma_peer
)
{
//
// Skip topo check on coherent platforms since
// NIC can map over C2C anyway and PCIe topology shouldn't matter.
//
if (nv->coherent)
{
return NV_TRUE;
}
switch (NVreg_GrdmaPciTopoCheckOverride)
{
case NV_REG_GRDMA_PCI_TOPO_CHECK_OVERRIDE_ALLOW_ACCESS:
return NV_TRUE;
case NV_REG_GRDMA_PCI_TOPO_CHECK_OVERRIDE_DENY_ACCESS:
return NV_FALSE;
default:
break;
}
// Allow RDMA by default on passthrough VMs.
if ((nv->flags & NV_FLAG_PASSTHRU) != 0)
return NV_TRUE;
//
// Only allow RDMA on unsupported chipsets if there exists
// a common PCI switch between the GPU and the other device
//
if ((nv->flags & NV_FLAG_PCI_P2P_UNSUPPORTED_CHIPSET) != 0)
return nv_pci_has_common_pci_switch(nv, to_pci_dev(dma_peer->dev));
return NV_TRUE;
}
#if defined(CONFIG_PM)
extern struct dev_pm_ops nv_pm_ops;
#endif
struct pci_driver nv_pci_driver = {
.name = MODULE_NAME,
.id_table = nv_pci_table,
.probe = nv_pci_probe,
.remove = nv_pci_remove,
.shutdown = nv_pci_shutdown,
#if defined(NV_USE_VFIO_PCI_CORE) && \
defined(NV_PCI_DRIVER_HAS_DRIVER_MANAGED_DMA)
.driver_managed_dma = NV_TRUE,
#endif
#if defined(CONFIG_PM)
.driver.pm = &nv_pm_ops,
#endif
};
void nv_pci_unregister_driver(void)
{
if (NVreg_RegisterPCIDriver == 0)
{
return;
}
return pci_unregister_driver(&nv_pci_driver);
}
int nv_pci_register_driver(void)
{
if (NVreg_RegisterPCIDriver == 0)
{
return 0;
}
return pci_register_driver(&nv_pci_driver);
}