Files
forge-build/modules/sd_hijack.py
2025-10-21 23:06:12 +07:00

260 lines
8.8 KiB
Python
Executable File

class StableDiffusionModelHijack:
def apply_optimizations(self, option=None):
pass
def convert_sdxl_to_ssd(self, m):
pass
def hijack(self, m):
pass
def undo_hijack(self, m):
pass
def apply_circular(self, enable):
pass
def clear_comments(self):
pass
def get_prompt_lengths(self, text, cond_stage_model):
from modules import shared
return shared.sd_model.get_prompt_lengths_on_ui(text)
def redo_hijack(self, m):
pass
model_hijack = StableDiffusionModelHijack()
# import torch
# from torch.nn.functional import silu
# from types import MethodType
#
# from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet, patches
# from modules.hypernetworks import hypernetwork
# from modules.shared import cmd_opts
# from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr, xlmr_m18
#
# import ldm.modules.attention
# import ldm.modules.diffusionmodules.model
# import ldm.modules.diffusionmodules.openaimodel
# import ldm.models.diffusion.ddpm
# import ldm.models.diffusion.ddim
# import ldm.models.diffusion.plms
# import ldm.modules.encoders.modules
#
# import sgm.modules.attention
# import sgm.modules.diffusionmodules.model
# import sgm.modules.diffusionmodules.openaimodel
# import sgm.modules.encoders.modules
#
# attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
# diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
# diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
#
# # new memory efficient cross attention blocks do not support hypernets and we already
# # have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
# ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
# ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
#
# # silence new console spam from SD2
# ldm.modules.attention.print = shared.ldm_print
# ldm.modules.diffusionmodules.model.print = shared.ldm_print
# ldm.util.print = shared.ldm_print
# ldm.models.diffusion.ddpm.print = shared.ldm_print
#
# optimizers = []
# current_optimizer: sd_hijack_optimizations.SdOptimization = None
#
# ldm_patched_forward = sd_unet.create_unet_forward(ldm.modules.diffusionmodules.openaimodel.UNetModel.forward)
# ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", ldm_patched_forward)
#
# sgm_patched_forward = sd_unet.create_unet_forward(sgm.modules.diffusionmodules.openaimodel.UNetModel.forward)
# sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sgm_patched_forward)
#
#
# def list_optimizers():
# new_optimizers = script_callbacks.list_optimizers_callback()
#
# new_optimizers = [x for x in new_optimizers if x.is_available()]
#
# new_optimizers = sorted(new_optimizers, key=lambda x: x.priority, reverse=True)
#
# optimizers.clear()
# optimizers.extend(new_optimizers)
#
#
# def apply_optimizations(option=None):
# return
#
#
# def undo_optimizations():
# return
#
#
# def fix_checkpoint():
# """checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
# checkpoints to be added when not training (there's a warning)"""
#
# pass
#
#
# def weighted_loss(sd_model, pred, target, mean=True):
# #Calculate the weight normally, but ignore the mean
# loss = sd_model._old_get_loss(pred, target, mean=False)
#
# #Check if we have weights available
# weight = getattr(sd_model, '_custom_loss_weight', None)
# if weight is not None:
# loss *= weight
#
# #Return the loss, as mean if specified
# return loss.mean() if mean else loss
#
# def weighted_forward(sd_model, x, c, w, *args, **kwargs):
# try:
# #Temporarily append weights to a place accessible during loss calc
# sd_model._custom_loss_weight = w
#
# #Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
# #Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
# if not hasattr(sd_model, '_old_get_loss'):
# sd_model._old_get_loss = sd_model.get_loss
# sd_model.get_loss = MethodType(weighted_loss, sd_model)
#
# #Run the standard forward function, but with the patched 'get_loss'
# return sd_model.forward(x, c, *args, **kwargs)
# finally:
# try:
# #Delete temporary weights if appended
# del sd_model._custom_loss_weight
# except AttributeError:
# pass
#
# #If we have an old loss function, reset the loss function to the original one
# if hasattr(sd_model, '_old_get_loss'):
# sd_model.get_loss = sd_model._old_get_loss
# del sd_model._old_get_loss
#
# def apply_weighted_forward(sd_model):
# #Add new function 'weighted_forward' that can be called to calc weighted loss
# sd_model.weighted_forward = MethodType(weighted_forward, sd_model)
#
# def undo_weighted_forward(sd_model):
# try:
# del sd_model.weighted_forward
# except AttributeError:
# pass
#
#
# class StableDiffusionModelHijack:
# fixes = None
# layers = None
# circular_enabled = False
# clip = None
# optimization_method = None
#
# def __init__(self):
# self.extra_generation_params = {}
# self.comments = []
#
# def apply_optimizations(self, option=None):
# pass
#
# def convert_sdxl_to_ssd(self, m):
# pass
#
# def hijack(self, m):
# pass
#
# def undo_hijack(self, m):
# pass
#
# def apply_circular(self, enable):
# pass
#
# def clear_comments(self):
# self.comments = []
# self.extra_generation_params = {}
#
# def get_prompt_lengths(self, text, cond_stage_model):
# pass
#
# def redo_hijack(self, m):
# pass
#
#
# class EmbeddingsWithFixes(torch.nn.Module):
# def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'):
# super().__init__()
# self.wrapped = wrapped
# self.embeddings = embeddings
# self.textual_inversion_key = textual_inversion_key
# self.weight = self.wrapped.weight
#
# def forward(self, input_ids):
# batch_fixes = self.embeddings.fixes
# self.embeddings.fixes = None
#
# inputs_embeds = self.wrapped(input_ids)
#
# if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
# return inputs_embeds
#
# vecs = []
# for fixes, tensor in zip(batch_fixes, inputs_embeds):
# for offset, embedding in fixes:
# vec = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
# emb = devices.cond_cast_unet(vec)
# emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
# tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype)
#
# vecs.append(tensor)
#
# return torch.stack(vecs)
#
#
# class TextualInversionEmbeddings(torch.nn.Embedding):
# def __init__(self, num_embeddings: int, embedding_dim: int, textual_inversion_key='clip_l', **kwargs):
# super().__init__(num_embeddings, embedding_dim, **kwargs)
#
# self.embeddings = model_hijack
# self.textual_inversion_key = textual_inversion_key
#
# @property
# def wrapped(self):
# return super().forward
#
# def forward(self, input_ids):
# return EmbeddingsWithFixes.forward(self, input_ids)
#
#
# def add_circular_option_to_conv_2d():
# conv2d_constructor = torch.nn.Conv2d.__init__
#
# def conv2d_constructor_circular(self, *args, **kwargs):
# return conv2d_constructor(self, *args, padding_mode='circular', **kwargs)
#
# torch.nn.Conv2d.__init__ = conv2d_constructor_circular
#
#
#
#
#
# def register_buffer(self, name, attr):
# """
# Fix register buffer bug for Mac OS.
# """
#
# if type(attr) == torch.Tensor:
# if attr.device != devices.device:
# attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
#
# setattr(self, name, attr)
#
#
# ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
# ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer