260 lines
8.8 KiB
Python
Executable File
260 lines
8.8 KiB
Python
Executable File
class StableDiffusionModelHijack:
|
|
|
|
def apply_optimizations(self, option=None):
|
|
pass
|
|
|
|
def convert_sdxl_to_ssd(self, m):
|
|
pass
|
|
|
|
def hijack(self, m):
|
|
pass
|
|
|
|
def undo_hijack(self, m):
|
|
pass
|
|
|
|
def apply_circular(self, enable):
|
|
pass
|
|
|
|
def clear_comments(self):
|
|
pass
|
|
|
|
def get_prompt_lengths(self, text, cond_stage_model):
|
|
from modules import shared
|
|
return shared.sd_model.get_prompt_lengths_on_ui(text)
|
|
|
|
def redo_hijack(self, m):
|
|
pass
|
|
|
|
|
|
model_hijack = StableDiffusionModelHijack()
|
|
|
|
# import torch
|
|
# from torch.nn.functional import silu
|
|
# from types import MethodType
|
|
#
|
|
# from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet, patches
|
|
# from modules.hypernetworks import hypernetwork
|
|
# from modules.shared import cmd_opts
|
|
# from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr, xlmr_m18
|
|
#
|
|
# import ldm.modules.attention
|
|
# import ldm.modules.diffusionmodules.model
|
|
# import ldm.modules.diffusionmodules.openaimodel
|
|
# import ldm.models.diffusion.ddpm
|
|
# import ldm.models.diffusion.ddim
|
|
# import ldm.models.diffusion.plms
|
|
# import ldm.modules.encoders.modules
|
|
#
|
|
# import sgm.modules.attention
|
|
# import sgm.modules.diffusionmodules.model
|
|
# import sgm.modules.diffusionmodules.openaimodel
|
|
# import sgm.modules.encoders.modules
|
|
#
|
|
# attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
|
|
# diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
|
|
# diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
|
|
#
|
|
# # new memory efficient cross attention blocks do not support hypernets and we already
|
|
# # have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
|
|
# ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
|
|
# ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
|
|
#
|
|
# # silence new console spam from SD2
|
|
# ldm.modules.attention.print = shared.ldm_print
|
|
# ldm.modules.diffusionmodules.model.print = shared.ldm_print
|
|
# ldm.util.print = shared.ldm_print
|
|
# ldm.models.diffusion.ddpm.print = shared.ldm_print
|
|
#
|
|
# optimizers = []
|
|
# current_optimizer: sd_hijack_optimizations.SdOptimization = None
|
|
#
|
|
# ldm_patched_forward = sd_unet.create_unet_forward(ldm.modules.diffusionmodules.openaimodel.UNetModel.forward)
|
|
# ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", ldm_patched_forward)
|
|
#
|
|
# sgm_patched_forward = sd_unet.create_unet_forward(sgm.modules.diffusionmodules.openaimodel.UNetModel.forward)
|
|
# sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sgm_patched_forward)
|
|
#
|
|
#
|
|
# def list_optimizers():
|
|
# new_optimizers = script_callbacks.list_optimizers_callback()
|
|
#
|
|
# new_optimizers = [x for x in new_optimizers if x.is_available()]
|
|
#
|
|
# new_optimizers = sorted(new_optimizers, key=lambda x: x.priority, reverse=True)
|
|
#
|
|
# optimizers.clear()
|
|
# optimizers.extend(new_optimizers)
|
|
#
|
|
#
|
|
# def apply_optimizations(option=None):
|
|
# return
|
|
#
|
|
#
|
|
# def undo_optimizations():
|
|
# return
|
|
#
|
|
#
|
|
# def fix_checkpoint():
|
|
# """checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
|
|
# checkpoints to be added when not training (there's a warning)"""
|
|
#
|
|
# pass
|
|
#
|
|
#
|
|
# def weighted_loss(sd_model, pred, target, mean=True):
|
|
# #Calculate the weight normally, but ignore the mean
|
|
# loss = sd_model._old_get_loss(pred, target, mean=False)
|
|
#
|
|
# #Check if we have weights available
|
|
# weight = getattr(sd_model, '_custom_loss_weight', None)
|
|
# if weight is not None:
|
|
# loss *= weight
|
|
#
|
|
# #Return the loss, as mean if specified
|
|
# return loss.mean() if mean else loss
|
|
#
|
|
# def weighted_forward(sd_model, x, c, w, *args, **kwargs):
|
|
# try:
|
|
# #Temporarily append weights to a place accessible during loss calc
|
|
# sd_model._custom_loss_weight = w
|
|
#
|
|
# #Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
|
|
# #Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
|
|
# if not hasattr(sd_model, '_old_get_loss'):
|
|
# sd_model._old_get_loss = sd_model.get_loss
|
|
# sd_model.get_loss = MethodType(weighted_loss, sd_model)
|
|
#
|
|
# #Run the standard forward function, but with the patched 'get_loss'
|
|
# return sd_model.forward(x, c, *args, **kwargs)
|
|
# finally:
|
|
# try:
|
|
# #Delete temporary weights if appended
|
|
# del sd_model._custom_loss_weight
|
|
# except AttributeError:
|
|
# pass
|
|
#
|
|
# #If we have an old loss function, reset the loss function to the original one
|
|
# if hasattr(sd_model, '_old_get_loss'):
|
|
# sd_model.get_loss = sd_model._old_get_loss
|
|
# del sd_model._old_get_loss
|
|
#
|
|
# def apply_weighted_forward(sd_model):
|
|
# #Add new function 'weighted_forward' that can be called to calc weighted loss
|
|
# sd_model.weighted_forward = MethodType(weighted_forward, sd_model)
|
|
#
|
|
# def undo_weighted_forward(sd_model):
|
|
# try:
|
|
# del sd_model.weighted_forward
|
|
# except AttributeError:
|
|
# pass
|
|
#
|
|
#
|
|
# class StableDiffusionModelHijack:
|
|
# fixes = None
|
|
# layers = None
|
|
# circular_enabled = False
|
|
# clip = None
|
|
# optimization_method = None
|
|
#
|
|
# def __init__(self):
|
|
# self.extra_generation_params = {}
|
|
# self.comments = []
|
|
#
|
|
# def apply_optimizations(self, option=None):
|
|
# pass
|
|
#
|
|
# def convert_sdxl_to_ssd(self, m):
|
|
# pass
|
|
#
|
|
# def hijack(self, m):
|
|
# pass
|
|
#
|
|
# def undo_hijack(self, m):
|
|
# pass
|
|
#
|
|
# def apply_circular(self, enable):
|
|
# pass
|
|
#
|
|
# def clear_comments(self):
|
|
# self.comments = []
|
|
# self.extra_generation_params = {}
|
|
#
|
|
# def get_prompt_lengths(self, text, cond_stage_model):
|
|
# pass
|
|
#
|
|
# def redo_hijack(self, m):
|
|
# pass
|
|
#
|
|
#
|
|
# class EmbeddingsWithFixes(torch.nn.Module):
|
|
# def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'):
|
|
# super().__init__()
|
|
# self.wrapped = wrapped
|
|
# self.embeddings = embeddings
|
|
# self.textual_inversion_key = textual_inversion_key
|
|
# self.weight = self.wrapped.weight
|
|
#
|
|
# def forward(self, input_ids):
|
|
# batch_fixes = self.embeddings.fixes
|
|
# self.embeddings.fixes = None
|
|
#
|
|
# inputs_embeds = self.wrapped(input_ids)
|
|
#
|
|
# if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
|
|
# return inputs_embeds
|
|
#
|
|
# vecs = []
|
|
# for fixes, tensor in zip(batch_fixes, inputs_embeds):
|
|
# for offset, embedding in fixes:
|
|
# vec = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
|
|
# emb = devices.cond_cast_unet(vec)
|
|
# emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
|
|
# tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype)
|
|
#
|
|
# vecs.append(tensor)
|
|
#
|
|
# return torch.stack(vecs)
|
|
#
|
|
#
|
|
# class TextualInversionEmbeddings(torch.nn.Embedding):
|
|
# def __init__(self, num_embeddings: int, embedding_dim: int, textual_inversion_key='clip_l', **kwargs):
|
|
# super().__init__(num_embeddings, embedding_dim, **kwargs)
|
|
#
|
|
# self.embeddings = model_hijack
|
|
# self.textual_inversion_key = textual_inversion_key
|
|
#
|
|
# @property
|
|
# def wrapped(self):
|
|
# return super().forward
|
|
#
|
|
# def forward(self, input_ids):
|
|
# return EmbeddingsWithFixes.forward(self, input_ids)
|
|
#
|
|
#
|
|
# def add_circular_option_to_conv_2d():
|
|
# conv2d_constructor = torch.nn.Conv2d.__init__
|
|
#
|
|
# def conv2d_constructor_circular(self, *args, **kwargs):
|
|
# return conv2d_constructor(self, *args, padding_mode='circular', **kwargs)
|
|
#
|
|
# torch.nn.Conv2d.__init__ = conv2d_constructor_circular
|
|
#
|
|
#
|
|
#
|
|
#
|
|
#
|
|
# def register_buffer(self, name, attr):
|
|
# """
|
|
# Fix register buffer bug for Mac OS.
|
|
# """
|
|
#
|
|
# if type(attr) == torch.Tensor:
|
|
# if attr.device != devices.device:
|
|
# attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
|
|
#
|
|
# setattr(self, name, attr)
|
|
#
|
|
#
|
|
# ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
|
|
# ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer
|