initial commit
This commit is contained in:
157
modules/sd_samplers_timesteps.py
Executable file
157
modules/sd_samplers_timesteps.py
Executable file
@@ -0,0 +1,157 @@
|
||||
import torch
|
||||
import inspect
|
||||
import sys
|
||||
from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl
|
||||
from modules.sd_samplers_cfg_denoiser import CFGDenoiser
|
||||
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
|
||||
|
||||
from modules.shared import opts
|
||||
import modules.shared as shared
|
||||
from backend.sampling.sampling_function import sampling_prepare, sampling_cleanup
|
||||
|
||||
|
||||
samplers_timesteps = [
|
||||
('DDIM', sd_samplers_timesteps_impl.ddim, ['ddim'], {}),
|
||||
('DDIM CFG++', sd_samplers_timesteps_impl.ddim_cfgpp, ['ddim_cfgpp'], {}),
|
||||
('PLMS', sd_samplers_timesteps_impl.plms, ['plms'], {}),
|
||||
('UniPC', sd_samplers_timesteps_impl.unipc, ['unipc'], {}),
|
||||
]
|
||||
|
||||
|
||||
samplers_data_timesteps = [
|
||||
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: CompVisSampler(funcname, model), aliases, options)
|
||||
for label, funcname, aliases, options in samplers_timesteps
|
||||
]
|
||||
|
||||
|
||||
class CompVisTimestepsDenoiser(torch.nn.Module):
|
||||
def __init__(self, model, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.inner_model = model
|
||||
self.inner_model.alphas_cumprod = 1.0 / (self.inner_model.forge_objects.unet.model.predictor.sigmas ** 2.0 + 1.0)
|
||||
|
||||
def forward(self, input, timesteps, **kwargs):
|
||||
return self.inner_model.apply_model(input, timesteps, **kwargs)
|
||||
|
||||
|
||||
class CFGDenoiserTimesteps(CFGDenoiser):
|
||||
|
||||
def __init__(self, sampler):
|
||||
super().__init__(sampler)
|
||||
self.classic_ddim_eps_estimation = True
|
||||
|
||||
@property
|
||||
def inner_model(self):
|
||||
if self.model_wrap is None:
|
||||
self.model_wrap = CompVisTimestepsDenoiser(shared.sd_model)
|
||||
|
||||
return self.model_wrap
|
||||
|
||||
|
||||
class CompVisSampler(sd_samplers_common.Sampler):
|
||||
def __init__(self, funcname, sd_model):
|
||||
super().__init__(funcname)
|
||||
|
||||
self.eta_option_field = 'eta_ddim'
|
||||
self.eta_infotext_field = 'Eta DDIM'
|
||||
self.eta_default = 0.0
|
||||
|
||||
self.model_wrap_cfg = CFGDenoiserTimesteps(self)
|
||||
self.model_wrap = self.model_wrap_cfg.inner_model
|
||||
|
||||
def get_timesteps(self, p, steps):
|
||||
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
|
||||
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
|
||||
discard_next_to_last_sigma = True
|
||||
p.extra_generation_params["Discard penultimate sigma"] = True
|
||||
|
||||
steps += 1 if discard_next_to_last_sigma else 0
|
||||
|
||||
timesteps = torch.clip(torch.asarray(list(range(0, 1000, 1000 // steps)), device=devices.device) + 1, 0, 999)
|
||||
|
||||
return timesteps
|
||||
|
||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||
unet_patcher = self.model_wrap.inner_model.forge_objects.unet
|
||||
sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x)
|
||||
|
||||
self.model_wrap.inner_model.alphas_cumprod = self.model_wrap.inner_model.alphas_cumprod.to(x.device)
|
||||
|
||||
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
|
||||
|
||||
timesteps = self.get_timesteps(p, steps).to(x.device)
|
||||
timesteps_sched = timesteps[:t_enc]
|
||||
|
||||
alphas_cumprod = shared.sd_model.alphas_cumprod
|
||||
sqrt_alpha_cumprod = torch.sqrt(alphas_cumprod[timesteps[t_enc]])
|
||||
sqrt_one_minus_alpha_cumprod = torch.sqrt(1 - alphas_cumprod[timesteps[t_enc]])
|
||||
|
||||
xi = x.to(noise) * sqrt_alpha_cumprod + noise * sqrt_one_minus_alpha_cumprod
|
||||
|
||||
if opts.img2img_extra_noise > 0:
|
||||
p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise
|
||||
extra_noise_params = ExtraNoiseParams(noise, x, xi)
|
||||
extra_noise_callback(extra_noise_params)
|
||||
noise = extra_noise_params.noise
|
||||
xi += noise * opts.img2img_extra_noise * sqrt_alpha_cumprod
|
||||
|
||||
extra_params_kwargs = self.initialize(p)
|
||||
parameters = inspect.signature(self.func).parameters
|
||||
|
||||
if 'timesteps' in parameters:
|
||||
extra_params_kwargs['timesteps'] = timesteps_sched
|
||||
if 'is_img2img' in parameters:
|
||||
extra_params_kwargs['is_img2img'] = True
|
||||
|
||||
self.model_wrap_cfg.init_latent = x
|
||||
self.last_latent = x
|
||||
self.sampler_extra_args = {
|
||||
'cond': conditioning,
|
||||
'image_cond': image_conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': p.cfg_scale,
|
||||
's_min_uncond': self.s_min_uncond
|
||||
}
|
||||
|
||||
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
|
||||
self.add_infotext(p)
|
||||
|
||||
sampling_cleanup(unet_patcher)
|
||||
|
||||
return samples
|
||||
|
||||
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||
unet_patcher = self.model_wrap.inner_model.forge_objects.unet
|
||||
sampling_prepare(self.model_wrap.inner_model.forge_objects.unet, x=x)
|
||||
|
||||
self.model_wrap.inner_model.alphas_cumprod = self.model_wrap.inner_model.alphas_cumprod.to(x.device)
|
||||
|
||||
steps = steps or p.steps
|
||||
timesteps = self.get_timesteps(p, steps).to(x.device)
|
||||
|
||||
extra_params_kwargs = self.initialize(p)
|
||||
parameters = inspect.signature(self.func).parameters
|
||||
|
||||
if 'timesteps' in parameters:
|
||||
extra_params_kwargs['timesteps'] = timesteps
|
||||
|
||||
self.last_latent = x
|
||||
self.sampler_extra_args = {
|
||||
'cond': conditioning,
|
||||
'image_cond': image_conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': p.cfg_scale,
|
||||
's_min_uncond': self.s_min_uncond
|
||||
}
|
||||
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
|
||||
self.add_infotext(p)
|
||||
|
||||
sampling_cleanup(unet_patcher)
|
||||
|
||||
return samples
|
||||
|
||||
|
||||
sys.modules['modules.sd_samplers_compvis'] = sys.modules[__name__]
|
||||
VanillaStableDiffusionSampler = CompVisSampler # temp. compatibility with older extensions
|
||||
Reference in New Issue
Block a user