initial commit
This commit is contained in:
1
packages_3rdparty/README.md
vendored
Executable file
1
packages_3rdparty/README.md
vendored
Executable file
@@ -0,0 +1 @@
|
||||
Please follow the standard of https://github.com/opencv/opencv/tree/315f85d4f484c1e2fa043c73ac3fdd9fc5997ee7/3rdparty when PR or modifying files.
|
||||
674
packages_3rdparty/comfyui_lora_collection/LICENSE
vendored
Executable file
674
packages_3rdparty/comfyui_lora_collection/LICENSE
vendored
Executable file
@@ -0,0 +1,674 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
||||
351
packages_3rdparty/comfyui_lora_collection/lora.py
vendored
Executable file
351
packages_3rdparty/comfyui_lora_collection/lora.py
vendored
Executable file
@@ -0,0 +1,351 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
from packages_3rdparty.comfyui_lora_collection import utils
|
||||
|
||||
|
||||
LORA_CLIP_MAP = {
|
||||
"mlp.fc1": "mlp_fc1",
|
||||
"mlp.fc2": "mlp_fc2",
|
||||
"self_attn.k_proj": "self_attn_k_proj",
|
||||
"self_attn.q_proj": "self_attn_q_proj",
|
||||
"self_attn.v_proj": "self_attn_v_proj",
|
||||
"self_attn.out_proj": "self_attn_out_proj",
|
||||
}
|
||||
|
||||
|
||||
def load_lora(lora, to_load):
|
||||
# BFL loras for Flux; from ComfyUI: comfy/lora_convert.py
|
||||
def convert_lora_bfl_control(sd):
|
||||
import torch
|
||||
sd_out = {}
|
||||
for k in sd:
|
||||
k_to = "diffusion_model.{}".format(k.replace(".lora_B.bias", ".diff_b").replace("_norm.scale", "_norm.scale.set_weight"))
|
||||
sd_out[k_to] = sd[k]
|
||||
|
||||
return sd_out
|
||||
|
||||
if "img_in.lora_A.weight" in lora and "single_blocks.0.norm.key_norm.scale" in lora:
|
||||
lora = convert_lora_bfl_control(lora)
|
||||
|
||||
patch_dict = {}
|
||||
loaded_keys = set()
|
||||
for x in to_load:
|
||||
alpha_name = "{}.alpha".format(x)
|
||||
alpha = None
|
||||
if alpha_name in lora.keys():
|
||||
alpha = lora[alpha_name].item()
|
||||
loaded_keys.add(alpha_name)
|
||||
|
||||
dora_scale_name = "{}.dora_scale".format(x)
|
||||
dora_scale = None
|
||||
if dora_scale_name in lora.keys():
|
||||
dora_scale = lora[dora_scale_name]
|
||||
loaded_keys.add(dora_scale_name)
|
||||
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
diffusers2_lora = "{}.lora_B.weight".format(x)
|
||||
diffusers3_lora = "{}.lora.up.weight".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers2_lora in lora.keys():
|
||||
A_name = diffusers2_lora
|
||||
B_name = "{}.lora_A.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers3_lora in lora.keys():
|
||||
A_name = diffusers3_lora
|
||||
B_name = "{}.lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale))
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
|
||||
|
||||
######## loha
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
|
||||
|
||||
######## lokr
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
|
||||
|
||||
#glora
|
||||
a1_name = "{}.a1.weight".format(x)
|
||||
a2_name = "{}.a2.weight".format(x)
|
||||
b1_name = "{}.b1.weight".format(x)
|
||||
b2_name = "{}.b2.weight".format(x)
|
||||
if a1_name in lora:
|
||||
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
|
||||
loaded_keys.add(a1_name)
|
||||
loaded_keys.add(a2_name)
|
||||
loaded_keys.add(b1_name)
|
||||
loaded_keys.add(b2_name)
|
||||
|
||||
w_norm_name = "{}.w_norm".format(x)
|
||||
b_norm_name = "{}.b_norm".format(x)
|
||||
w_norm = lora.get(w_norm_name, None)
|
||||
b_norm = lora.get(b_norm_name, None)
|
||||
|
||||
if w_norm is not None:
|
||||
loaded_keys.add(w_norm_name)
|
||||
patch_dict[to_load[x]] = ("diff", (w_norm,))
|
||||
if b_norm is not None:
|
||||
loaded_keys.add(b_norm_name)
|
||||
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))
|
||||
|
||||
diff_name = "{}.diff".format(x)
|
||||
diff_weight = lora.get(diff_name, None)
|
||||
if diff_weight is not None:
|
||||
patch_dict[to_load[x]] = ("diff", (diff_weight,))
|
||||
loaded_keys.add(diff_name)
|
||||
|
||||
diff_bias_name = "{}.diff_b".format(x)
|
||||
diff_bias = lora.get(diff_bias_name, None)
|
||||
if diff_bias is not None:
|
||||
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
|
||||
loaded_keys.add(diff_bias_name)
|
||||
|
||||
set_weight_name = "{}.set_weight".format(x)
|
||||
set_weight = lora.get(set_weight_name, None)
|
||||
if set_weight is not None:
|
||||
patch_dict[to_load[x]] = ("set", (set_weight,))
|
||||
loaded_keys.add(set_weight_name)
|
||||
|
||||
remaining_dict = {x: y for x, y in lora.items() if x not in loaded_keys}
|
||||
return patch_dict, remaining_dict
|
||||
|
||||
|
||||
def model_lora_keys_clip(model, key_map={}):
|
||||
sdk = model.state_dict().keys()
|
||||
|
||||
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
||||
clip_l_present = False
|
||||
for b in range(32): #TODO: clean up
|
||||
for c in LORA_CLIP_MAP:
|
||||
k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
clip_l_present = True
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
|
||||
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
||||
if k in sdk:
|
||||
if clip_l_present:
|
||||
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
else:
|
||||
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
|
||||
key_map[lora_key] = k
|
||||
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
||||
key_map[lora_key] = k
|
||||
lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
|
||||
key_map[lora_key] = k
|
||||
|
||||
for k in sdk:
|
||||
if k.endswith(".weight"):
|
||||
if k.startswith("t5xxl.transformer."):#OneTrainer SD3 lora
|
||||
l_key = k[len("t5xxl.transformer."):-len(".weight")]
|
||||
lora_key = "lora_te3_{}".format(l_key.replace(".", "_"))
|
||||
key_map[lora_key] = k
|
||||
|
||||
#####
|
||||
lora_key = "lora_te2_{}".format(l_key.replace(".", "_"))#OneTrainer Flux lora, by Forge
|
||||
key_map[lora_key] = k
|
||||
#####
|
||||
# elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora
|
||||
# l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")]
|
||||
# lora_key = "lora_te1_{}".format(l_key.replace(".", "_"))
|
||||
# key_map[lora_key] = k
|
||||
|
||||
|
||||
k = "clip_g.transformer.text_projection.weight"
|
||||
if k in sdk:
|
||||
# key_map["lora_prior_te_text_projection"] = k #cascade lora?
|
||||
key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
|
||||
key_map["lora_te2_text_projection"] = k #OneTrainer SD3 lora
|
||||
|
||||
k = "clip_l.transformer.text_projection.weight"
|
||||
if k in sdk:
|
||||
key_map["lora_te1_text_projection"] = k #OneTrainer SD3 lora, not necessary but omits warning
|
||||
|
||||
return sdk, key_map
|
||||
|
||||
|
||||
def model_lora_keys_unet(model, key_map={}):
|
||||
sd = model.state_dict()
|
||||
sdk = sd.keys()
|
||||
|
||||
for k in sdk:
|
||||
if k.startswith("diffusion_model."):
|
||||
if k.endswith(".weight"):
|
||||
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = k
|
||||
key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
|
||||
else:
|
||||
key_map["{}".format(k)] = k #generic lora format for not .weight without any weird key names
|
||||
|
||||
diffusers_keys = utils.unet_to_diffusers(model.diffusion_model.config)
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
||||
key_lora = k[:-len(".weight")].replace(".", "_")
|
||||
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
||||
key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format
|
||||
|
||||
diffusers_lora_prefix = ["", "unet."]
|
||||
for p in diffusers_lora_prefix:
|
||||
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
|
||||
if diffusers_lora_key.endswith(".to_out.0"):
|
||||
diffusers_lora_key = diffusers_lora_key[:-2]
|
||||
key_map[diffusers_lora_key] = unet_key
|
||||
|
||||
# if 'stable-diffusion-3' in model.config.huggingface_repo.lower(): #Diffusers lora SD3
|
||||
# diffusers_keys = utils.mmdit_to_diffusers(model.diffusion_model.config, output_prefix="diffusion_model.")
|
||||
# for k in diffusers_keys:
|
||||
# if k.endswith(".weight"):
|
||||
# to = diffusers_keys[k]
|
||||
# key_lora = "transformer.{}".format(k[:-len(".weight")]) #regular diffusers sd3 lora format
|
||||
# key_map[key_lora] = to
|
||||
|
||||
# key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #format for flash-sd3 lora and others?
|
||||
# key_map[key_lora] = to
|
||||
|
||||
# key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora
|
||||
# key_map[key_lora] = to
|
||||
#
|
||||
# if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow
|
||||
# diffusers_keys = utils.auraflow_to_diffusers(model.diffusion_model.config, output_prefix="diffusion_model.")
|
||||
# for k in diffusers_keys:
|
||||
# if k.endswith(".weight"):
|
||||
# to = diffusers_keys[k]
|
||||
# key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format
|
||||
# key_map[key_lora] = to
|
||||
#
|
||||
# if isinstance(model, comfy.model_base.HunyuanDiT):
|
||||
# for k in sdk:
|
||||
# if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
||||
# key_lora = k[len("diffusion_model."):-len(".weight")]
|
||||
# key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format
|
||||
|
||||
if 'flux' in model.config.huggingface_repo.lower(): #Diffusers lora Flux
|
||||
diffusers_keys = utils.flux_to_diffusers(model.diffusion_model.config, output_prefix="diffusion_model.")
|
||||
for k in diffusers_keys:
|
||||
if k.endswith(".weight"):
|
||||
to = diffusers_keys[k]
|
||||
key_map["transformer.{}".format(k[:-len(".weight")])] = to # simpletrainer and probably regular diffusers flux lora format
|
||||
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to # simpletrainer lycoris
|
||||
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to # onetrainer
|
||||
|
||||
return sdk, key_map
|
||||
760
packages_3rdparty/comfyui_lora_collection/utils.py
vendored
Executable file
760
packages_3rdparty/comfyui_lora_collection/utils.py
vendored
Executable file
@@ -0,0 +1,760 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
|
||||
import torch
|
||||
import math
|
||||
import struct
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import itertools
|
||||
|
||||
|
||||
def calculate_parameters(sd, prefix=""):
|
||||
params = 0
|
||||
for k in sd.keys():
|
||||
if k.startswith(prefix):
|
||||
w = sd[k]
|
||||
params += w.nelement()
|
||||
return params
|
||||
|
||||
def weight_dtype(sd, prefix=""):
|
||||
dtypes = {}
|
||||
for k in sd.keys():
|
||||
if k.startswith(prefix):
|
||||
w = sd[k]
|
||||
dtypes[w.dtype] = dtypes.get(w.dtype, 0) + 1
|
||||
|
||||
if len(dtypes) == 0:
|
||||
return None
|
||||
|
||||
return max(dtypes, key=dtypes.get)
|
||||
|
||||
def state_dict_key_replace(state_dict, keys_to_replace):
|
||||
for x in keys_to_replace:
|
||||
if x in state_dict:
|
||||
state_dict[keys_to_replace[x]] = state_dict.pop(x)
|
||||
return state_dict
|
||||
|
||||
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
|
||||
if filter_keys:
|
||||
out = {}
|
||||
else:
|
||||
out = state_dict
|
||||
for rp in replace_prefix:
|
||||
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
|
||||
for x in replace:
|
||||
w = state_dict.pop(x[0])
|
||||
out[x[1]] = w
|
||||
return out
|
||||
|
||||
|
||||
def transformers_convert(sd, prefix_from, prefix_to, number):
|
||||
keys_to_replace = {
|
||||
"{}positional_embedding": "{}embeddings.position_embedding.weight",
|
||||
"{}token_embedding.weight": "{}embeddings.token_embedding.weight",
|
||||
"{}ln_final.weight": "{}final_layer_norm.weight",
|
||||
"{}ln_final.bias": "{}final_layer_norm.bias",
|
||||
}
|
||||
|
||||
for k in keys_to_replace:
|
||||
x = k.format(prefix_from)
|
||||
if x in sd:
|
||||
sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x)
|
||||
|
||||
resblock_to_replace = {
|
||||
"ln_1": "layer_norm1",
|
||||
"ln_2": "layer_norm2",
|
||||
"mlp.c_fc": "mlp.fc1",
|
||||
"mlp.c_proj": "mlp.fc2",
|
||||
"attn.out_proj": "self_attn.out_proj",
|
||||
}
|
||||
|
||||
for resblock in range(number):
|
||||
for x in resblock_to_replace:
|
||||
for y in ["weight", "bias"]:
|
||||
k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
|
||||
k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
|
||||
if k in sd:
|
||||
sd[k_to] = sd.pop(k)
|
||||
|
||||
for y in ["weight", "bias"]:
|
||||
k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
|
||||
if k_from in sd:
|
||||
weights = sd.pop(k_from)
|
||||
shape_from = weights.shape[0] // 3
|
||||
for x in range(3):
|
||||
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
|
||||
k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
|
||||
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
|
||||
|
||||
return sd
|
||||
|
||||
def clip_text_transformers_convert(sd, prefix_from, prefix_to):
|
||||
sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32)
|
||||
|
||||
tp = "{}text_projection.weight".format(prefix_from)
|
||||
if tp in sd:
|
||||
sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp)
|
||||
|
||||
tp = "{}text_projection".format(prefix_from)
|
||||
if tp in sd:
|
||||
sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous()
|
||||
return sd
|
||||
|
||||
|
||||
UNET_MAP_ATTENTIONS = {
|
||||
"proj_in.weight",
|
||||
"proj_in.bias",
|
||||
"proj_out.weight",
|
||||
"proj_out.bias",
|
||||
"norm.weight",
|
||||
"norm.bias",
|
||||
}
|
||||
|
||||
TRANSFORMER_BLOCKS = {
|
||||
"norm1.weight",
|
||||
"norm1.bias",
|
||||
"norm2.weight",
|
||||
"norm2.bias",
|
||||
"norm3.weight",
|
||||
"norm3.bias",
|
||||
"attn1.to_q.weight",
|
||||
"attn1.to_k.weight",
|
||||
"attn1.to_v.weight",
|
||||
"attn1.to_out.0.weight",
|
||||
"attn1.to_out.0.bias",
|
||||
"attn2.to_q.weight",
|
||||
"attn2.to_k.weight",
|
||||
"attn2.to_v.weight",
|
||||
"attn2.to_out.0.weight",
|
||||
"attn2.to_out.0.bias",
|
||||
"ff.net.0.proj.weight",
|
||||
"ff.net.0.proj.bias",
|
||||
"ff.net.2.weight",
|
||||
"ff.net.2.bias",
|
||||
}
|
||||
|
||||
UNET_MAP_RESNET = {
|
||||
"in_layers.2.weight": "conv1.weight",
|
||||
"in_layers.2.bias": "conv1.bias",
|
||||
"emb_layers.1.weight": "time_emb_proj.weight",
|
||||
"emb_layers.1.bias": "time_emb_proj.bias",
|
||||
"out_layers.3.weight": "conv2.weight",
|
||||
"out_layers.3.bias": "conv2.bias",
|
||||
"skip_connection.weight": "conv_shortcut.weight",
|
||||
"skip_connection.bias": "conv_shortcut.bias",
|
||||
"in_layers.0.weight": "norm1.weight",
|
||||
"in_layers.0.bias": "norm1.bias",
|
||||
"out_layers.0.weight": "norm2.weight",
|
||||
"out_layers.0.bias": "norm2.bias",
|
||||
}
|
||||
|
||||
UNET_MAP_BASIC = {
|
||||
("label_emb.0.0.weight", "class_embedding.linear_1.weight"),
|
||||
("label_emb.0.0.bias", "class_embedding.linear_1.bias"),
|
||||
("label_emb.0.2.weight", "class_embedding.linear_2.weight"),
|
||||
("label_emb.0.2.bias", "class_embedding.linear_2.bias"),
|
||||
("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
|
||||
("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
|
||||
("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
|
||||
("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
|
||||
("input_blocks.0.0.weight", "conv_in.weight"),
|
||||
("input_blocks.0.0.bias", "conv_in.bias"),
|
||||
("out.0.weight", "conv_norm_out.weight"),
|
||||
("out.0.bias", "conv_norm_out.bias"),
|
||||
("out.2.weight", "conv_out.weight"),
|
||||
("out.2.bias", "conv_out.bias"),
|
||||
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
||||
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
||||
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
||||
("time_embed.2.bias", "time_embedding.linear_2.bias")
|
||||
}
|
||||
|
||||
def unet_to_diffusers(unet_config):
|
||||
if "num_res_blocks" not in unet_config:
|
||||
return {}
|
||||
num_res_blocks = unet_config["num_res_blocks"]
|
||||
channel_mult = unet_config["channel_mult"]
|
||||
transformer_depth = unet_config["transformer_depth"][:]
|
||||
transformer_depth_output = unet_config["transformer_depth_output"][:]
|
||||
num_blocks = len(channel_mult)
|
||||
|
||||
transformers_mid = unet_config.get("transformer_depth_middle", None)
|
||||
|
||||
diffusers_unet_map = {}
|
||||
for x in range(num_blocks):
|
||||
n = 1 + (num_res_blocks[x] + 1) * x
|
||||
for i in range(num_res_blocks[x]):
|
||||
for b in UNET_MAP_RESNET:
|
||||
diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
|
||||
num_transformers = transformer_depth.pop(0)
|
||||
if num_transformers > 0:
|
||||
for b in UNET_MAP_ATTENTIONS:
|
||||
diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
|
||||
for t in range(num_transformers):
|
||||
for b in TRANSFORMER_BLOCKS:
|
||||
diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
|
||||
n += 1
|
||||
for k in ["weight", "bias"]:
|
||||
diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)
|
||||
|
||||
i = 0
|
||||
for b in UNET_MAP_ATTENTIONS:
|
||||
diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
|
||||
for t in range(transformers_mid):
|
||||
for b in TRANSFORMER_BLOCKS:
|
||||
diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)
|
||||
|
||||
for i, n in enumerate([0, 2]):
|
||||
for b in UNET_MAP_RESNET:
|
||||
diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)
|
||||
|
||||
num_res_blocks = list(reversed(num_res_blocks))
|
||||
for x in range(num_blocks):
|
||||
n = (num_res_blocks[x] + 1) * x
|
||||
l = num_res_blocks[x] + 1
|
||||
for i in range(l):
|
||||
c = 0
|
||||
for b in UNET_MAP_RESNET:
|
||||
diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
|
||||
c += 1
|
||||
num_transformers = transformer_depth_output.pop()
|
||||
if num_transformers > 0:
|
||||
c += 1
|
||||
for b in UNET_MAP_ATTENTIONS:
|
||||
diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
|
||||
for t in range(num_transformers):
|
||||
for b in TRANSFORMER_BLOCKS:
|
||||
diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
|
||||
if i == l - 1:
|
||||
for k in ["weight", "bias"]:
|
||||
diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
|
||||
n += 1
|
||||
|
||||
for k in UNET_MAP_BASIC:
|
||||
diffusers_unet_map[k[1]] = k[0]
|
||||
|
||||
return diffusers_unet_map
|
||||
|
||||
def swap_scale_shift(weight):
|
||||
shift, scale = weight.chunk(2, dim=0)
|
||||
new_weight = torch.cat([scale, shift], dim=0)
|
||||
return new_weight
|
||||
|
||||
MMDIT_MAP_BASIC = {
|
||||
("context_embedder.bias", "context_embedder.bias"),
|
||||
("context_embedder.weight", "context_embedder.weight"),
|
||||
("t_embedder.mlp.0.bias", "time_text_embed.timestep_embedder.linear_1.bias"),
|
||||
("t_embedder.mlp.0.weight", "time_text_embed.timestep_embedder.linear_1.weight"),
|
||||
("t_embedder.mlp.2.bias", "time_text_embed.timestep_embedder.linear_2.bias"),
|
||||
("t_embedder.mlp.2.weight", "time_text_embed.timestep_embedder.linear_2.weight"),
|
||||
("x_embedder.proj.bias", "pos_embed.proj.bias"),
|
||||
("x_embedder.proj.weight", "pos_embed.proj.weight"),
|
||||
("y_embedder.mlp.0.bias", "time_text_embed.text_embedder.linear_1.bias"),
|
||||
("y_embedder.mlp.0.weight", "time_text_embed.text_embedder.linear_1.weight"),
|
||||
("y_embedder.mlp.2.bias", "time_text_embed.text_embedder.linear_2.bias"),
|
||||
("y_embedder.mlp.2.weight", "time_text_embed.text_embedder.linear_2.weight"),
|
||||
("pos_embed", "pos_embed.pos_embed"),
|
||||
("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift),
|
||||
("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift),
|
||||
("final_layer.linear.bias", "proj_out.bias"),
|
||||
("final_layer.linear.weight", "proj_out.weight"),
|
||||
}
|
||||
|
||||
MMDIT_MAP_BLOCK = {
|
||||
("context_block.adaLN_modulation.1.bias", "norm1_context.linear.bias"),
|
||||
("context_block.adaLN_modulation.1.weight", "norm1_context.linear.weight"),
|
||||
("context_block.attn.proj.bias", "attn.to_add_out.bias"),
|
||||
("context_block.attn.proj.weight", "attn.to_add_out.weight"),
|
||||
("context_block.mlp.fc1.bias", "ff_context.net.0.proj.bias"),
|
||||
("context_block.mlp.fc1.weight", "ff_context.net.0.proj.weight"),
|
||||
("context_block.mlp.fc2.bias", "ff_context.net.2.bias"),
|
||||
("context_block.mlp.fc2.weight", "ff_context.net.2.weight"),
|
||||
("x_block.adaLN_modulation.1.bias", "norm1.linear.bias"),
|
||||
("x_block.adaLN_modulation.1.weight", "norm1.linear.weight"),
|
||||
("x_block.attn.proj.bias", "attn.to_out.0.bias"),
|
||||
("x_block.attn.proj.weight", "attn.to_out.0.weight"),
|
||||
("x_block.mlp.fc1.bias", "ff.net.0.proj.bias"),
|
||||
("x_block.mlp.fc1.weight", "ff.net.0.proj.weight"),
|
||||
("x_block.mlp.fc2.bias", "ff.net.2.bias"),
|
||||
("x_block.mlp.fc2.weight", "ff.net.2.weight"),
|
||||
}
|
||||
|
||||
def mmdit_to_diffusers(mmdit_config, output_prefix=""):
|
||||
key_map = {}
|
||||
|
||||
depth = mmdit_config.get("depth", 0)
|
||||
num_blocks = mmdit_config.get("num_blocks", depth)
|
||||
for i in range(num_blocks):
|
||||
block_from = "transformer_blocks.{}".format(i)
|
||||
block_to = "{}joint_blocks.{}".format(output_prefix, i)
|
||||
|
||||
offset = depth * 64
|
||||
|
||||
for end in ("weight", "bias"):
|
||||
k = "{}.attn.".format(block_from)
|
||||
qkv = "{}.x_block.attn.qkv.{}".format(block_to, end)
|
||||
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset))
|
||||
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset))
|
||||
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset))
|
||||
|
||||
qkv = "{}.context_block.attn.qkv.{}".format(block_to, end)
|
||||
key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, offset))
|
||||
key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, offset, offset))
|
||||
key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, offset * 2, offset))
|
||||
|
||||
for k in MMDIT_MAP_BLOCK:
|
||||
key_map["{}.{}".format(block_from, k[1])] = "{}.{}".format(block_to, k[0])
|
||||
|
||||
map_basic = MMDIT_MAP_BASIC.copy()
|
||||
map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.bias".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.bias".format(depth - 1), swap_scale_shift))
|
||||
map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.weight".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.weight".format(depth - 1), swap_scale_shift))
|
||||
|
||||
for k in map_basic:
|
||||
if len(k) > 2:
|
||||
key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
|
||||
else:
|
||||
key_map[k[1]] = "{}{}".format(output_prefix, k[0])
|
||||
|
||||
return key_map
|
||||
|
||||
|
||||
def auraflow_to_diffusers(mmdit_config, output_prefix=""):
|
||||
n_double_layers = mmdit_config.get("n_double_layers", 0)
|
||||
n_layers = mmdit_config.get("n_layers", 0)
|
||||
|
||||
key_map = {}
|
||||
for i in range(n_layers):
|
||||
if i < n_double_layers:
|
||||
index = i
|
||||
prefix_from = "joint_transformer_blocks"
|
||||
prefix_to = "{}double_layers".format(output_prefix)
|
||||
block_map = {
|
||||
"attn.to_q.weight": "attn.w2q.weight",
|
||||
"attn.to_k.weight": "attn.w2k.weight",
|
||||
"attn.to_v.weight": "attn.w2v.weight",
|
||||
"attn.to_out.0.weight": "attn.w2o.weight",
|
||||
"attn.add_q_proj.weight": "attn.w1q.weight",
|
||||
"attn.add_k_proj.weight": "attn.w1k.weight",
|
||||
"attn.add_v_proj.weight": "attn.w1v.weight",
|
||||
"attn.to_add_out.weight": "attn.w1o.weight",
|
||||
"ff.linear_1.weight": "mlpX.c_fc1.weight",
|
||||
"ff.linear_2.weight": "mlpX.c_fc2.weight",
|
||||
"ff.out_projection.weight": "mlpX.c_proj.weight",
|
||||
"ff_context.linear_1.weight": "mlpC.c_fc1.weight",
|
||||
"ff_context.linear_2.weight": "mlpC.c_fc2.weight",
|
||||
"ff_context.out_projection.weight": "mlpC.c_proj.weight",
|
||||
"norm1.linear.weight": "modX.1.weight",
|
||||
"norm1_context.linear.weight": "modC.1.weight",
|
||||
}
|
||||
else:
|
||||
index = i - n_double_layers
|
||||
prefix_from = "single_transformer_blocks"
|
||||
prefix_to = "{}single_layers".format(output_prefix)
|
||||
|
||||
block_map = {
|
||||
"attn.to_q.weight": "attn.w1q.weight",
|
||||
"attn.to_k.weight": "attn.w1k.weight",
|
||||
"attn.to_v.weight": "attn.w1v.weight",
|
||||
"attn.to_out.0.weight": "attn.w1o.weight",
|
||||
"norm1.linear.weight": "modCX.1.weight",
|
||||
"ff.linear_1.weight": "mlp.c_fc1.weight",
|
||||
"ff.linear_2.weight": "mlp.c_fc2.weight",
|
||||
"ff.out_projection.weight": "mlp.c_proj.weight"
|
||||
}
|
||||
|
||||
for k in block_map:
|
||||
key_map["{}.{}.{}".format(prefix_from, index, k)] = "{}.{}.{}".format(prefix_to, index, block_map[k])
|
||||
|
||||
MAP_BASIC = {
|
||||
("positional_encoding", "pos_embed.pos_embed"),
|
||||
("register_tokens", "register_tokens"),
|
||||
("t_embedder.mlp.0.weight", "time_step_proj.linear_1.weight"),
|
||||
("t_embedder.mlp.0.bias", "time_step_proj.linear_1.bias"),
|
||||
("t_embedder.mlp.2.weight", "time_step_proj.linear_2.weight"),
|
||||
("t_embedder.mlp.2.bias", "time_step_proj.linear_2.bias"),
|
||||
("cond_seq_linear.weight", "context_embedder.weight"),
|
||||
("init_x_linear.weight", "pos_embed.proj.weight"),
|
||||
("init_x_linear.bias", "pos_embed.proj.bias"),
|
||||
("final_linear.weight", "proj_out.weight"),
|
||||
("modF.1.weight", "norm_out.linear.weight", swap_scale_shift),
|
||||
}
|
||||
|
||||
for k in MAP_BASIC:
|
||||
if len(k) > 2:
|
||||
key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
|
||||
else:
|
||||
key_map[k[1]] = "{}{}".format(output_prefix, k[0])
|
||||
|
||||
return key_map
|
||||
|
||||
def flux_to_diffusers(mmdit_config, output_prefix=""):
|
||||
n_double_layers = mmdit_config.get("depth", 0)
|
||||
n_single_layers = mmdit_config.get("depth_single_blocks", 0)
|
||||
hidden_size = mmdit_config.get("hidden_size", 0)
|
||||
|
||||
key_map = {}
|
||||
for index in range(n_double_layers):
|
||||
prefix_from = "transformer_blocks.{}".format(index)
|
||||
prefix_to = "{}double_blocks.{}".format(output_prefix, index)
|
||||
|
||||
for end in ("weight", "bias"):
|
||||
k = "{}.attn.".format(prefix_from)
|
||||
qkv = "{}.img_attn.qkv.{}".format(prefix_to, end)
|
||||
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
|
||||
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
|
||||
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
|
||||
|
||||
k = "{}.attn.".format(prefix_from)
|
||||
qkv = "{}.txt_attn.qkv.{}".format(prefix_to, end)
|
||||
key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
|
||||
key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
|
||||
key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
|
||||
|
||||
block_map = {
|
||||
"attn.to_out.0.weight": "img_attn.proj.weight",
|
||||
"attn.to_out.0.bias": "img_attn.proj.bias",
|
||||
"norm1.linear.weight": "img_mod.lin.weight",
|
||||
"norm1.linear.bias": "img_mod.lin.bias",
|
||||
"norm1_context.linear.weight": "txt_mod.lin.weight",
|
||||
"norm1_context.linear.bias": "txt_mod.lin.bias",
|
||||
"attn.to_add_out.weight": "txt_attn.proj.weight",
|
||||
"attn.to_add_out.bias": "txt_attn.proj.bias",
|
||||
"ff.net.0.proj.weight": "img_mlp.0.weight",
|
||||
"ff.net.0.proj.bias": "img_mlp.0.bias",
|
||||
"ff.net.2.weight": "img_mlp.2.weight",
|
||||
"ff.net.2.bias": "img_mlp.2.bias",
|
||||
"ff_context.net.0.proj.weight": "txt_mlp.0.weight",
|
||||
"ff_context.net.0.proj.bias": "txt_mlp.0.bias",
|
||||
"ff_context.net.2.weight": "txt_mlp.2.weight",
|
||||
"ff_context.net.2.bias": "txt_mlp.2.bias",
|
||||
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
|
||||
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
|
||||
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
|
||||
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
|
||||
}
|
||||
|
||||
for k in block_map:
|
||||
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k])
|
||||
|
||||
for index in range(n_single_layers):
|
||||
prefix_from = "single_transformer_blocks.{}".format(index)
|
||||
prefix_to = "{}single_blocks.{}".format(output_prefix, index)
|
||||
|
||||
for end in ("weight", "bias"):
|
||||
k = "{}.attn.".format(prefix_from)
|
||||
qkv = "{}.linear1.{}".format(prefix_to, end)
|
||||
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
|
||||
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
|
||||
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
|
||||
key_map["{}.proj_mlp.{}".format(prefix_from, end)] = (qkv, (0, hidden_size * 3, hidden_size * 4))
|
||||
|
||||
block_map = {
|
||||
"norm.linear.weight": "modulation.lin.weight",
|
||||
"norm.linear.bias": "modulation.lin.bias",
|
||||
"proj_out.weight": "linear2.weight",
|
||||
"proj_out.bias": "linear2.bias",
|
||||
"attn.norm_q.weight": "norm.query_norm.scale",
|
||||
"attn.norm_k.weight": "norm.key_norm.scale",
|
||||
}
|
||||
|
||||
for k in block_map:
|
||||
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k])
|
||||
|
||||
MAP_BASIC = {
|
||||
("final_layer.linear.bias", "proj_out.bias"),
|
||||
("final_layer.linear.weight", "proj_out.weight"),
|
||||
("img_in.bias", "x_embedder.bias"),
|
||||
("img_in.weight", "x_embedder.weight"),
|
||||
("time_in.in_layer.bias", "time_text_embed.timestep_embedder.linear_1.bias"),
|
||||
("time_in.in_layer.weight", "time_text_embed.timestep_embedder.linear_1.weight"),
|
||||
("time_in.out_layer.bias", "time_text_embed.timestep_embedder.linear_2.bias"),
|
||||
("time_in.out_layer.weight", "time_text_embed.timestep_embedder.linear_2.weight"),
|
||||
("txt_in.bias", "context_embedder.bias"),
|
||||
("txt_in.weight", "context_embedder.weight"),
|
||||
("vector_in.in_layer.bias", "time_text_embed.text_embedder.linear_1.bias"),
|
||||
("vector_in.in_layer.weight", "time_text_embed.text_embedder.linear_1.weight"),
|
||||
("vector_in.out_layer.bias", "time_text_embed.text_embedder.linear_2.bias"),
|
||||
("vector_in.out_layer.weight", "time_text_embed.text_embedder.linear_2.weight"),
|
||||
("guidance_in.in_layer.bias", "time_text_embed.guidance_embedder.linear_1.bias"),
|
||||
("guidance_in.in_layer.weight", "time_text_embed.guidance_embedder.linear_1.weight"),
|
||||
("guidance_in.out_layer.bias", "time_text_embed.guidance_embedder.linear_2.bias"),
|
||||
("guidance_in.out_layer.weight", "time_text_embed.guidance_embedder.linear_2.weight"),
|
||||
("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift),
|
||||
("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift),
|
||||
}
|
||||
|
||||
for k in MAP_BASIC:
|
||||
if len(k) > 2:
|
||||
key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
|
||||
else:
|
||||
key_map[k[1]] = "{}{}".format(output_prefix, k[0])
|
||||
|
||||
return key_map
|
||||
|
||||
def repeat_to_batch_size(tensor, batch_size, dim=0):
|
||||
if tensor.shape[dim] > batch_size:
|
||||
return tensor.narrow(dim, 0, batch_size)
|
||||
elif tensor.shape[dim] < batch_size:
|
||||
return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size)
|
||||
return tensor
|
||||
|
||||
def resize_to_batch_size(tensor, batch_size):
|
||||
in_batch_size = tensor.shape[0]
|
||||
if in_batch_size == batch_size:
|
||||
return tensor
|
||||
|
||||
if batch_size <= 1:
|
||||
return tensor[:batch_size]
|
||||
|
||||
output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device)
|
||||
if batch_size < in_batch_size:
|
||||
scale = (in_batch_size - 1) / (batch_size - 1)
|
||||
for i in range(batch_size):
|
||||
output[i] = tensor[min(round(i * scale), in_batch_size - 1)]
|
||||
else:
|
||||
scale = in_batch_size / batch_size
|
||||
for i in range(batch_size):
|
||||
output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)]
|
||||
|
||||
return output
|
||||
|
||||
def convert_sd_to(state_dict, dtype):
|
||||
keys = list(state_dict.keys())
|
||||
for k in keys:
|
||||
state_dict[k] = state_dict[k].to(dtype)
|
||||
return state_dict
|
||||
|
||||
def safetensors_header(safetensors_path, max_size=100*1024*1024):
|
||||
with open(safetensors_path, "rb") as f:
|
||||
header = f.read(8)
|
||||
length_of_header = struct.unpack('<Q', header)[0]
|
||||
if length_of_header > max_size:
|
||||
return None
|
||||
return f.read(length_of_header)
|
||||
|
||||
def set_attr(obj, attr, value):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs[:-1]:
|
||||
obj = getattr(obj, name)
|
||||
prev = getattr(obj, attrs[-1])
|
||||
setattr(obj, attrs[-1], value)
|
||||
return prev
|
||||
|
||||
def set_attr_param(obj, attr, value):
|
||||
return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False))
|
||||
|
||||
def copy_to_param(obj, attr, value):
|
||||
# inplace update tensor instead of replacing it
|
||||
attrs = attr.split(".")
|
||||
for name in attrs[:-1]:
|
||||
obj = getattr(obj, name)
|
||||
prev = getattr(obj, attrs[-1])
|
||||
prev.data.copy_(value)
|
||||
|
||||
def get_attr(obj, attr):
|
||||
attrs = attr.split(".")
|
||||
for name in attrs:
|
||||
obj = getattr(obj, name)
|
||||
return obj
|
||||
|
||||
def bislerp(samples, width, height):
|
||||
def slerp(b1, b2, r):
|
||||
'''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
|
||||
|
||||
c = b1.shape[-1]
|
||||
|
||||
#norms
|
||||
b1_norms = torch.norm(b1, dim=-1, keepdim=True)
|
||||
b2_norms = torch.norm(b2, dim=-1, keepdim=True)
|
||||
|
||||
#normalize
|
||||
b1_normalized = b1 / b1_norms
|
||||
b2_normalized = b2 / b2_norms
|
||||
|
||||
#zero when norms are zero
|
||||
b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
|
||||
b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0
|
||||
|
||||
#slerp
|
||||
dot = (b1_normalized*b2_normalized).sum(1)
|
||||
omega = torch.acos(dot)
|
||||
so = torch.sin(omega)
|
||||
|
||||
#technically not mathematically correct, but more pleasing?
|
||||
res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
|
||||
res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)
|
||||
|
||||
#edge cases for same or polar opposites
|
||||
res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5]
|
||||
res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
|
||||
return res
|
||||
|
||||
def generate_bilinear_data(length_old, length_new, device):
|
||||
coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1))
|
||||
coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
|
||||
ratios = coords_1 - coords_1.floor()
|
||||
coords_1 = coords_1.to(torch.int64)
|
||||
|
||||
coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1
|
||||
coords_2[:,:,:,-1] -= 1
|
||||
coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
|
||||
coords_2 = coords_2.to(torch.int64)
|
||||
return ratios, coords_1, coords_2
|
||||
|
||||
orig_dtype = samples.dtype
|
||||
samples = samples.float()
|
||||
n,c,h,w = samples.shape
|
||||
h_new, w_new = (height, width)
|
||||
|
||||
#linear w
|
||||
ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device)
|
||||
coords_1 = coords_1.expand((n, c, h, -1))
|
||||
coords_2 = coords_2.expand((n, c, h, -1))
|
||||
ratios = ratios.expand((n, 1, h, -1))
|
||||
|
||||
pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
|
||||
pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
|
||||
ratios = ratios.movedim(1, -1).reshape((-1,1))
|
||||
|
||||
result = slerp(pass_1, pass_2, ratios)
|
||||
result = result.reshape(n, h, w_new, c).movedim(-1, 1)
|
||||
|
||||
#linear h
|
||||
ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device)
|
||||
coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
|
||||
coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
|
||||
ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
|
||||
|
||||
pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
|
||||
pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
|
||||
ratios = ratios.movedim(1, -1).reshape((-1,1))
|
||||
|
||||
result = slerp(pass_1, pass_2, ratios)
|
||||
result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
|
||||
return result.to(orig_dtype)
|
||||
|
||||
def lanczos(samples, width, height):
|
||||
images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
|
||||
images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
|
||||
images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
|
||||
result = torch.stack(images)
|
||||
return result.to(samples.device, samples.dtype)
|
||||
|
||||
def common_upscale(samples, width, height, upscale_method, crop):
|
||||
if crop == "center":
|
||||
old_width = samples.shape[3]
|
||||
old_height = samples.shape[2]
|
||||
old_aspect = old_width / old_height
|
||||
new_aspect = width / height
|
||||
x = 0
|
||||
y = 0
|
||||
if old_aspect > new_aspect:
|
||||
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
|
||||
elif old_aspect < new_aspect:
|
||||
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
|
||||
s = samples[:,:,y:old_height-y,x:old_width-x]
|
||||
else:
|
||||
s = samples
|
||||
|
||||
if upscale_method == "bislerp":
|
||||
return bislerp(s, width, height)
|
||||
elif upscale_method == "lanczos":
|
||||
return lanczos(s, width, height)
|
||||
else:
|
||||
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
||||
|
||||
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
|
||||
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
|
||||
|
||||
@torch.inference_mode()
|
||||
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
|
||||
dims = len(tile)
|
||||
output = torch.empty([samples.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), samples.shape[2:])), device=output_device)
|
||||
|
||||
for b in range(samples.shape[0]):
|
||||
s = samples[b:b+1]
|
||||
out = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device)
|
||||
out_div = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device)
|
||||
|
||||
for it in itertools.product(*map(lambda a: range(0, a[0], a[1] - overlap), zip(s.shape[2:], tile))):
|
||||
s_in = s
|
||||
upscaled = []
|
||||
|
||||
for d in range(dims):
|
||||
pos = max(0, min(s.shape[d + 2] - overlap, it[d]))
|
||||
l = min(tile[d], s.shape[d + 2] - pos)
|
||||
s_in = s_in.narrow(d + 2, pos, l)
|
||||
upscaled.append(round(pos * upscale_amount))
|
||||
ps = function(s_in).to(output_device)
|
||||
mask = torch.ones_like(ps)
|
||||
feather = round(overlap * upscale_amount)
|
||||
for t in range(feather):
|
||||
for d in range(2, dims + 2):
|
||||
m = mask.narrow(d, t, 1)
|
||||
m *= ((1.0/feather) * (t + 1))
|
||||
m = mask.narrow(d, mask.shape[d] -1 -t, 1)
|
||||
m *= ((1.0/feather) * (t + 1))
|
||||
|
||||
o = out
|
||||
o_d = out_div
|
||||
for d in range(dims):
|
||||
o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2])
|
||||
o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2])
|
||||
|
||||
o += ps * mask
|
||||
o_d += mask
|
||||
|
||||
if pbar is not None:
|
||||
pbar.update(1)
|
||||
|
||||
output[b:b+1] = out/out_div
|
||||
return output
|
||||
|
||||
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
|
||||
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device, pbar)
|
||||
|
||||
PROGRESS_BAR_ENABLED = True
|
||||
def set_progress_bar_enabled(enabled):
|
||||
global PROGRESS_BAR_ENABLED
|
||||
PROGRESS_BAR_ENABLED = enabled
|
||||
|
||||
PROGRESS_BAR_HOOK = None
|
||||
def set_progress_bar_global_hook(function):
|
||||
global PROGRESS_BAR_HOOK
|
||||
PROGRESS_BAR_HOOK = function
|
||||
|
||||
class ProgressBar:
|
||||
def __init__(self, total):
|
||||
global PROGRESS_BAR_HOOK
|
||||
self.total = total
|
||||
self.current = 0
|
||||
self.hook = PROGRESS_BAR_HOOK
|
||||
|
||||
def update_absolute(self, value, total=None, preview=None):
|
||||
if total is not None:
|
||||
self.total = total
|
||||
if value > self.total:
|
||||
value = self.total
|
||||
self.current = value
|
||||
if self.hook is not None:
|
||||
self.hook(self.current, self.total, preview)
|
||||
|
||||
def update(self, value):
|
||||
self.update_absolute(self.current + value)
|
||||
21
packages_3rdparty/gguf/LICENSE
vendored
Executable file
21
packages_3rdparty/gguf/LICENSE
vendored
Executable file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Georgi Gerganov
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
2
packages_3rdparty/gguf/README.md
vendored
Executable file
2
packages_3rdparty/gguf/README.md
vendored
Executable file
@@ -0,0 +1,2 @@
|
||||
This is Forge's implementation of GGUF - the difference is that it supports pytorch quant/dequant
|
||||
Codes are based on LLama.cpp's GGUF - the difference is that it supports quant
|
||||
9
packages_3rdparty/gguf/__init__.py
vendored
Executable file
9
packages_3rdparty/gguf/__init__.py
vendored
Executable file
@@ -0,0 +1,9 @@
|
||||
from .constants import *
|
||||
from .lazy import *
|
||||
from .gguf_reader import *
|
||||
from .gguf_writer import *
|
||||
from .quants import *
|
||||
from .tensor_mapping import *
|
||||
from .vocab import *
|
||||
from .utility import *
|
||||
from .metadata import *
|
||||
1357
packages_3rdparty/gguf/constants.py
vendored
Executable file
1357
packages_3rdparty/gguf/constants.py
vendored
Executable file
File diff suppressed because it is too large
Load Diff
317
packages_3rdparty/gguf/gguf_reader.py
vendored
Executable file
317
packages_3rdparty/gguf/gguf_reader.py
vendored
Executable file
@@ -0,0 +1,317 @@
|
||||
#
|
||||
# GGUF file reading/modification support. For API usage information,
|
||||
# please see the files scripts/ for some fairly simple examples.
|
||||
#
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
from typing import Any, Literal, NamedTuple, TypeVar, Union
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
from .quants import quant_shape_to_byte_shape
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Allow running file in package as a script.
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
from gguf.constants import (
|
||||
GGML_QUANT_SIZES,
|
||||
GGUF_DEFAULT_ALIGNMENT,
|
||||
GGUF_MAGIC,
|
||||
GGUF_VERSION,
|
||||
GGMLQuantizationType,
|
||||
GGUFValueType,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
READER_SUPPORTED_VERSIONS = [2, GGUF_VERSION]
|
||||
|
||||
|
||||
class ReaderField(NamedTuple):
|
||||
# Offset to start of this field.
|
||||
offset: int
|
||||
|
||||
# Name of the field (not necessarily from file data).
|
||||
name: str
|
||||
|
||||
# Data parts. Some types have multiple components, such as strings
|
||||
# that consist of a length followed by the string data.
|
||||
parts: list[npt.NDArray[Any]] = []
|
||||
|
||||
# Indexes into parts that we can call the actual data. For example
|
||||
# an array of strings will be populated with indexes to the actual
|
||||
# string data.
|
||||
data: list[int] = [-1]
|
||||
|
||||
types: list[GGUFValueType] = []
|
||||
|
||||
|
||||
class ReaderTensor(NamedTuple):
|
||||
name: str
|
||||
tensor_type: GGMLQuantizationType
|
||||
shape: npt.NDArray[np.uint32]
|
||||
n_elements: int
|
||||
n_bytes: int
|
||||
data_offset: int
|
||||
data: npt.NDArray[Any]
|
||||
field: ReaderField
|
||||
|
||||
|
||||
class GGUFReader:
|
||||
# I - same as host, S - swapped
|
||||
byte_order: Literal['I', 'S'] = 'I'
|
||||
alignment: int = GGUF_DEFAULT_ALIGNMENT
|
||||
data_offset: int
|
||||
|
||||
# Note: Internal helper, API may change.
|
||||
gguf_scalar_to_np: dict[GGUFValueType, type[np.generic]] = {
|
||||
GGUFValueType.UINT8: np.uint8,
|
||||
GGUFValueType.INT8: np.int8,
|
||||
GGUFValueType.UINT16: np.uint16,
|
||||
GGUFValueType.INT16: np.int16,
|
||||
GGUFValueType.UINT32: np.uint32,
|
||||
GGUFValueType.INT32: np.int32,
|
||||
GGUFValueType.FLOAT32: np.float32,
|
||||
GGUFValueType.UINT64: np.uint64,
|
||||
GGUFValueType.INT64: np.int64,
|
||||
GGUFValueType.FLOAT64: np.float64,
|
||||
GGUFValueType.BOOL: np.bool_,
|
||||
}
|
||||
|
||||
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r', 'r+', 'c'] = 'r'):
|
||||
self.data = np.memmap(path, mode = mode)
|
||||
offs = 0
|
||||
|
||||
# Check for GGUF magic
|
||||
if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC:
|
||||
raise ValueError('GGUF magic invalid')
|
||||
offs += 4
|
||||
|
||||
# Check GGUF version
|
||||
temp_version = self._get(offs, np.uint32)
|
||||
if temp_version[0] & 65535 == 0:
|
||||
# If we get 0 here that means it's (probably) a GGUF file created for
|
||||
# the opposite byte order of the machine this script is running on.
|
||||
self.byte_order = 'S'
|
||||
temp_version = temp_version.newbyteorder(self.byte_order)
|
||||
version = temp_version[0]
|
||||
if version not in READER_SUPPORTED_VERSIONS:
|
||||
raise ValueError(f'Sorry, file appears to be version {version} which we cannot handle')
|
||||
self.fields: OrderedDict[str, ReaderField] = OrderedDict()
|
||||
self.tensors: list[ReaderTensor] = []
|
||||
offs += self._push_field(ReaderField(offs, 'GGUF.version', [temp_version], [0], [GGUFValueType.UINT32]))
|
||||
|
||||
# Check tensor count and kv count
|
||||
temp_counts = self._get(offs, np.uint64, 2)
|
||||
offs += self._push_field(ReaderField(offs, 'GGUF.tensor_count', [temp_counts[:1]], [0], [GGUFValueType.UINT64]))
|
||||
offs += self._push_field(ReaderField(offs, 'GGUF.kv_count', [temp_counts[1:]], [0], [GGUFValueType.UINT64]))
|
||||
tensor_count, kv_count = temp_counts
|
||||
offs = self._build_fields(offs, kv_count)
|
||||
|
||||
# Build Tensor Info Fields
|
||||
offs, tensors_fields = self._build_tensor_info(offs, tensor_count)
|
||||
new_align = self.fields.get('general.alignment')
|
||||
if new_align is not None:
|
||||
if new_align.types != [GGUFValueType.UINT32]:
|
||||
raise ValueError('Bad type for general.alignment field')
|
||||
self.alignment = new_align.parts[-1][0]
|
||||
padding = offs % self.alignment
|
||||
if padding != 0:
|
||||
offs += self.alignment - padding
|
||||
self.data_offset = offs
|
||||
self._build_tensors(offs, tensors_fields)
|
||||
|
||||
_DT = TypeVar('_DT', bound = npt.DTypeLike)
|
||||
|
||||
# Fetch a key/value metadata field by key.
|
||||
def get_field(self, key: str) -> Union[ReaderField, None]:
|
||||
return self.fields.get(key, None)
|
||||
|
||||
# Fetch a tensor from the list by index.
|
||||
def get_tensor(self, idx: int) -> ReaderTensor:
|
||||
return self.tensors[idx]
|
||||
|
||||
def _get(
|
||||
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I', 'S', '<'] = None,
|
||||
) -> npt.NDArray[Any]:
|
||||
count = int(count)
|
||||
itemsize = int(np.empty([], dtype = dtype).itemsize)
|
||||
end_offs = offset + itemsize * count
|
||||
return (
|
||||
self.data[offset:end_offs]
|
||||
.view(dtype = dtype)[:count]
|
||||
.newbyteorder(override_order or self.byte_order)
|
||||
)
|
||||
|
||||
def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
|
||||
if field.name in self.fields:
|
||||
# TODO: add option to generate error on duplicate keys
|
||||
# raise KeyError(f'Duplicate {field.name} already in list at offset {field.offset}')
|
||||
|
||||
logger.warning(f'Duplicate key {field.name} at offset {field.offset}')
|
||||
self.fields[field.name + '_{}'.format(field.offset)] = field
|
||||
else:
|
||||
self.fields[field.name] = field
|
||||
return 0 if skip_sum else sum(int(part.nbytes) for part in field.parts)
|
||||
|
||||
def _get_str(self, offset: int) -> tuple[npt.NDArray[np.uint64], npt.NDArray[np.uint8]]:
|
||||
slen = self._get(offset, np.uint64)
|
||||
return slen, self._get(offset + 8, np.uint8, slen[0])
|
||||
|
||||
def _get_field_parts(
|
||||
self, orig_offs: int, raw_type: int,
|
||||
) -> tuple[int, list[npt.NDArray[Any]], list[int], list[GGUFValueType]]:
|
||||
offs = orig_offs
|
||||
types: list[GGUFValueType] = []
|
||||
gtype = GGUFValueType(raw_type)
|
||||
types.append(gtype)
|
||||
# Handle strings.
|
||||
if gtype == GGUFValueType.STRING:
|
||||
sparts: list[npt.NDArray[Any]] = list(self._get_str(offs))
|
||||
size = sum(int(part.nbytes) for part in sparts)
|
||||
return size, sparts, [1], types
|
||||
# Check if it's a simple scalar type.
|
||||
nptype = self.gguf_scalar_to_np.get(gtype)
|
||||
if nptype is not None:
|
||||
val = self._get(offs, nptype)
|
||||
return int(val.nbytes), [val], [0], types
|
||||
# Handle arrays.
|
||||
if gtype == GGUFValueType.ARRAY:
|
||||
raw_itype = self._get(offs, np.uint32)
|
||||
offs += int(raw_itype.nbytes)
|
||||
alen = self._get(offs, np.uint64)
|
||||
offs += int(alen.nbytes)
|
||||
aparts: list[npt.NDArray[Any]] = [raw_itype, alen]
|
||||
data_idxs: list[int] = []
|
||||
for idx in range(alen[0]):
|
||||
curr_size, curr_parts, curr_idxs, curr_types = self._get_field_parts(offs, raw_itype[0])
|
||||
if idx == 0:
|
||||
types += curr_types
|
||||
idxs_offs = len(aparts)
|
||||
aparts += curr_parts
|
||||
data_idxs += (idx + idxs_offs for idx in curr_idxs)
|
||||
offs += curr_size
|
||||
return offs - orig_offs, aparts, data_idxs, types
|
||||
# We can't deal with this one.
|
||||
raise ValueError('Unknown/unhandled field type {gtype}')
|
||||
|
||||
def _get_tensor_info_field(self, orig_offs: int) -> ReaderField:
|
||||
offs = orig_offs
|
||||
|
||||
# Get Tensor Name
|
||||
name_len, name_data = self._get_str(offs)
|
||||
offs += int(name_len.nbytes + name_data.nbytes)
|
||||
|
||||
# Get Tensor Dimensions Count
|
||||
n_dims = self._get(offs, np.uint32)
|
||||
offs += int(n_dims.nbytes)
|
||||
|
||||
# Get Tensor Dimension Array
|
||||
dims = self._get(offs, np.uint64, n_dims[0])
|
||||
offs += int(dims.nbytes)
|
||||
|
||||
# Get Tensor Encoding Scheme Type
|
||||
raw_dtype = self._get(offs, np.uint32)
|
||||
offs += int(raw_dtype.nbytes)
|
||||
|
||||
# Get Tensor Offset
|
||||
offset_tensor = self._get(offs, np.uint64)
|
||||
offs += int(offset_tensor.nbytes)
|
||||
|
||||
return ReaderField(
|
||||
orig_offs,
|
||||
str(bytes(name_data), encoding = 'utf-8'),
|
||||
[name_len, name_data, n_dims, dims, raw_dtype, offset_tensor],
|
||||
[1, 3, 4, 5],
|
||||
)
|
||||
|
||||
def _build_fields(self, offs: int, count: int) -> int:
|
||||
for _ in range(count):
|
||||
orig_offs = offs
|
||||
kv_klen, kv_kdata = self._get_str(offs)
|
||||
offs += int(kv_klen.nbytes + kv_kdata.nbytes)
|
||||
raw_kv_type = self._get(offs, np.uint32)
|
||||
offs += int(raw_kv_type.nbytes)
|
||||
parts: list[npt.NDArray[Any]] = [kv_klen, kv_kdata, raw_kv_type]
|
||||
idxs_offs = len(parts)
|
||||
field_size, field_parts, field_idxs, field_types = self._get_field_parts(offs, raw_kv_type[0])
|
||||
parts += field_parts
|
||||
self._push_field(ReaderField(
|
||||
orig_offs,
|
||||
str(bytes(kv_kdata), encoding = 'utf-8'),
|
||||
parts,
|
||||
[idx + idxs_offs for idx in field_idxs],
|
||||
field_types,
|
||||
), skip_sum = True)
|
||||
offs += field_size
|
||||
return offs
|
||||
|
||||
def _build_tensor_info(self, offs: int, count: int) -> tuple[int, list[ReaderField]]:
|
||||
tensor_fields = []
|
||||
for _ in range(count):
|
||||
field = self._get_tensor_info_field(offs)
|
||||
offs += sum(int(part.nbytes) for part in field.parts)
|
||||
tensor_fields.append(field)
|
||||
return offs, tensor_fields
|
||||
|
||||
def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
|
||||
tensors = []
|
||||
tensor_names = set() # keep track of name to prevent duplicated tensors
|
||||
for field in fields:
|
||||
_name_len, name_data, _n_dims, dims, raw_dtype, offset_tensor = field.parts
|
||||
# check if there's any tensor having same name already in the list
|
||||
tensor_name = str(bytes(name_data), encoding = 'utf-8')
|
||||
if tensor_name in tensor_names:
|
||||
raise ValueError(f'Found duplicated tensor with name {tensor_name}')
|
||||
tensor_names.add(tensor_name)
|
||||
ggml_type = GGMLQuantizationType(raw_dtype[0])
|
||||
n_elems = int(np.prod(dims))
|
||||
np_dims = tuple(reversed(dims.tolist()))
|
||||
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
|
||||
n_bytes = n_elems * type_size // block_size
|
||||
data_offs = int(start_offs + offset_tensor[0])
|
||||
item_type: npt.DTypeLike
|
||||
if ggml_type == GGMLQuantizationType.F16:
|
||||
item_count = n_elems
|
||||
item_type = np.float16
|
||||
elif ggml_type == GGMLQuantizationType.F32:
|
||||
item_count = n_elems
|
||||
item_type = np.float32
|
||||
elif ggml_type == GGMLQuantizationType.F64:
|
||||
item_count = n_elems
|
||||
item_type = np.float64
|
||||
elif ggml_type == GGMLQuantizationType.I8:
|
||||
item_count = n_elems
|
||||
item_type = np.int8
|
||||
elif ggml_type == GGMLQuantizationType.I16:
|
||||
item_count = n_elems
|
||||
item_type = np.int16
|
||||
elif ggml_type == GGMLQuantizationType.I32:
|
||||
item_count = n_elems
|
||||
item_type = np.int32
|
||||
elif ggml_type == GGMLQuantizationType.I64:
|
||||
item_count = n_elems
|
||||
item_type = np.int64
|
||||
else:
|
||||
item_count = n_bytes
|
||||
item_type = np.uint8
|
||||
np_dims = quant_shape_to_byte_shape(np_dims, ggml_type)
|
||||
tensors.append(ReaderTensor(
|
||||
name = tensor_name,
|
||||
tensor_type = ggml_type,
|
||||
shape = dims,
|
||||
n_elements = n_elems,
|
||||
n_bytes = n_bytes,
|
||||
data_offset = data_offs,
|
||||
data = self._get(data_offs, item_type, item_count).reshape(np_dims),
|
||||
field = field,
|
||||
))
|
||||
self.tensors = tensors
|
||||
885
packages_3rdparty/gguf/gguf_writer.py
vendored
Executable file
885
packages_3rdparty/gguf/gguf_writer.py
vendored
Executable file
@@ -0,0 +1,885 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import struct
|
||||
import tempfile
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum, auto
|
||||
from math import prod
|
||||
from pathlib import Path
|
||||
from io import BufferedWriter
|
||||
from typing import IO, Any, Sequence, Mapping
|
||||
from string import ascii_letters, digits
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .constants import (
|
||||
GGUF_DEFAULT_ALIGNMENT,
|
||||
GGUF_MAGIC,
|
||||
GGUF_VERSION,
|
||||
GGMLQuantizationType,
|
||||
GGUFEndian,
|
||||
GGUFValueType,
|
||||
Keys,
|
||||
RopeScalingType,
|
||||
PoolingType,
|
||||
TokenType,
|
||||
)
|
||||
|
||||
from .quants import quant_shape_from_byte_shape
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf"
|
||||
|
||||
|
||||
@dataclass
|
||||
class TensorInfo:
|
||||
shape: Sequence[int]
|
||||
dtype: GGMLQuantizationType
|
||||
nbytes: int
|
||||
tensor: np.ndarray[Any, Any] | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class GGUFValue:
|
||||
value: Any
|
||||
type: GGUFValueType
|
||||
|
||||
|
||||
class WriterState(Enum):
|
||||
NO_FILE = auto()
|
||||
EMPTY = auto()
|
||||
HEADER = auto()
|
||||
KV_DATA = auto()
|
||||
TI_DATA = auto()
|
||||
WEIGHTS = auto()
|
||||
|
||||
|
||||
class GGUFWriter:
|
||||
fout: list[BufferedWriter] | None
|
||||
path: Path | None
|
||||
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
|
||||
tensors: list[dict[str, TensorInfo]]
|
||||
kv_data: list[dict[str, GGUFValue]]
|
||||
state: WriterState
|
||||
_simple_value_packing = {
|
||||
GGUFValueType.UINT8: "B",
|
||||
GGUFValueType.INT8: "b",
|
||||
GGUFValueType.UINT16: "H",
|
||||
GGUFValueType.INT16: "h",
|
||||
GGUFValueType.UINT32: "I",
|
||||
GGUFValueType.INT32: "i",
|
||||
GGUFValueType.FLOAT32: "f",
|
||||
GGUFValueType.UINT64: "Q",
|
||||
GGUFValueType.INT64: "q",
|
||||
GGUFValueType.FLOAT64: "d",
|
||||
GGUFValueType.BOOL: "?",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
|
||||
):
|
||||
self.fout = None
|
||||
self.path = Path(path) if path else None
|
||||
self.arch = arch
|
||||
self.endianess = endianess
|
||||
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
|
||||
self.use_temp_file = use_temp_file
|
||||
self.temp_file = None
|
||||
self.tensors = [{}]
|
||||
self.kv_data = [{}]
|
||||
self.split_max_tensors = split_max_tensors
|
||||
self.split_max_size = split_max_size
|
||||
self.dry_run = dry_run
|
||||
self.small_first_shard = small_first_shard
|
||||
logger.info("gguf: This GGUF file is for {0} Endian only".format(
|
||||
"Big" if self.endianess == GGUFEndian.BIG else "Little",
|
||||
))
|
||||
self.state = WriterState.NO_FILE
|
||||
|
||||
if self.small_first_shard:
|
||||
self.tensors.append({})
|
||||
|
||||
self.add_architecture()
|
||||
|
||||
def get_total_parameter_count(self) -> tuple[int, int, int, int]:
|
||||
total_params = 0
|
||||
shared_params = 0
|
||||
expert_params = 0
|
||||
|
||||
expert_sum = 0
|
||||
n_expert_tensors = 0
|
||||
|
||||
last_lora_a: tuple[str, TensorInfo] | None = None
|
||||
|
||||
for tensors in self.tensors:
|
||||
for name, info in tensors.items():
|
||||
|
||||
shape = info.shape
|
||||
|
||||
if name.endswith(".lora_a"):
|
||||
last_lora_a = (name, info)
|
||||
continue
|
||||
elif name.endswith(".lora_b"):
|
||||
if last_lora_a is None or last_lora_a[0] != name[:-1] + "a":
|
||||
# Bail when the LoRA pair can't be found trivially
|
||||
logger.warning("can't measure LoRA size correctly, tensor order is unusual")
|
||||
return 0, 0, 0, 0
|
||||
else:
|
||||
shape = (*shape[:-1], last_lora_a[1].shape[-1])
|
||||
|
||||
size = prod(shape)
|
||||
|
||||
if "_exps." in name:
|
||||
expert_params += (size // shape[-3])
|
||||
expert_sum += shape[-3]
|
||||
n_expert_tensors += 1
|
||||
else:
|
||||
shared_params += size
|
||||
|
||||
total_params += size
|
||||
|
||||
# Hopefully this should work even for variable-expert-count models
|
||||
expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0
|
||||
|
||||
# Negate the total to signal it's likely not exact
|
||||
if last_lora_a is not None:
|
||||
total_params = -total_params
|
||||
|
||||
# NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py
|
||||
return total_params, shared_params, expert_params, expert_count
|
||||
|
||||
def format_shard_names(self, path: Path) -> list[Path]:
|
||||
if len(self.tensors) == 1:
|
||||
return [path]
|
||||
return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))]
|
||||
|
||||
def open_output_file(self, path: Path | None = None) -> None:
|
||||
if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path):
|
||||
# allow calling this multiple times as long as the path is the same
|
||||
return
|
||||
|
||||
if self.state is not WriterState.NO_FILE:
|
||||
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
|
||||
|
||||
if path is not None:
|
||||
self.path = path
|
||||
|
||||
if self.path is not None:
|
||||
filenames = self.print_plan()
|
||||
self.fout = [open(filename, "wb") for filename in filenames]
|
||||
self.state = WriterState.EMPTY
|
||||
|
||||
def print_plan(self) -> list[Path]:
|
||||
logger.info("Writing the following files:")
|
||||
assert self.path is not None
|
||||
filenames = self.format_shard_names(self.path)
|
||||
assert len(filenames) == len(self.tensors)
|
||||
for name, tensors in zip(filenames, self.tensors):
|
||||
logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}")
|
||||
|
||||
if self.dry_run:
|
||||
logger.info("Dry run, not writing files")
|
||||
for name in filenames:
|
||||
print(name) # noqa: NP100
|
||||
exit()
|
||||
|
||||
return filenames
|
||||
|
||||
def add_shard_kv_data(self) -> None:
|
||||
if len(self.tensors) == 1:
|
||||
return
|
||||
|
||||
total_tensors = sum(len(t) for t in self.tensors)
|
||||
assert self.fout is not None
|
||||
total_splits = len(self.fout)
|
||||
self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits))
|
||||
for i, kv_data in enumerate(self.kv_data):
|
||||
kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16)
|
||||
kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16)
|
||||
kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32)
|
||||
|
||||
def write_header_to_file(self, path: Path | None = None) -> None:
|
||||
if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0):
|
||||
logger.warning("Model fails split requirements, not splitting")
|
||||
|
||||
self.open_output_file(path)
|
||||
|
||||
if self.state is not WriterState.EMPTY:
|
||||
raise ValueError(f'Expected output file to be empty, got {self.state}')
|
||||
|
||||
assert self.fout is not None
|
||||
assert len(self.fout) == len(self.tensors)
|
||||
assert len(self.kv_data) == 1
|
||||
|
||||
self.add_shard_kv_data()
|
||||
|
||||
for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data):
|
||||
fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True))
|
||||
fout.write(self._pack("I", GGUF_VERSION))
|
||||
fout.write(self._pack("Q", len(tensors)))
|
||||
fout.write(self._pack("Q", len(kv_data)))
|
||||
fout.flush()
|
||||
self.state = WriterState.HEADER
|
||||
|
||||
def write_kv_data_to_file(self) -> None:
|
||||
if self.state is not WriterState.HEADER:
|
||||
raise ValueError(f'Expected output file to contain the header, got {self.state}')
|
||||
assert self.fout is not None
|
||||
|
||||
for fout, kv_data in zip(self.fout, self.kv_data):
|
||||
kv_bytes = bytearray()
|
||||
|
||||
for key, val in kv_data.items():
|
||||
kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
|
||||
kv_bytes += self._pack_val(val.value, val.type, add_vtype=True)
|
||||
|
||||
fout.write(kv_bytes)
|
||||
|
||||
self.flush()
|
||||
self.state = WriterState.KV_DATA
|
||||
|
||||
def write_ti_data_to_file(self) -> None:
|
||||
if self.state is not WriterState.KV_DATA:
|
||||
raise ValueError(f'Expected output file to contain KV data, got {self.state}')
|
||||
assert self.fout is not None
|
||||
|
||||
for fout, tensors in zip(self.fout, self.tensors):
|
||||
ti_data = bytearray()
|
||||
offset_tensor = 0
|
||||
|
||||
for name, ti in tensors.items():
|
||||
ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False)
|
||||
n_dims = len(ti.shape)
|
||||
ti_data += self._pack("I", n_dims)
|
||||
for j in range(n_dims):
|
||||
ti_data += self._pack("Q", ti.shape[n_dims - 1 - j])
|
||||
ti_data += self._pack("I", ti.dtype)
|
||||
ti_data += self._pack("Q", offset_tensor)
|
||||
offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment)
|
||||
|
||||
fout.write(ti_data)
|
||||
fout.flush()
|
||||
self.state = WriterState.TI_DATA
|
||||
|
||||
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
|
||||
if any(key in kv_data for kv_data in self.kv_data):
|
||||
raise ValueError(f'Duplicated key name {key!r}')
|
||||
|
||||
self.kv_data[0][key] = GGUFValue(value=val, type=vtype)
|
||||
|
||||
def add_uint8(self, key: str, val: int) -> None:
|
||||
self.add_key_value(key,val, GGUFValueType.UINT8)
|
||||
|
||||
def add_int8(self, key: str, val: int) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.INT8)
|
||||
|
||||
def add_uint16(self, key: str, val: int) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.UINT16)
|
||||
|
||||
def add_int16(self, key: str, val: int) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.INT16)
|
||||
|
||||
def add_uint32(self, key: str, val: int) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.UINT32)
|
||||
|
||||
def add_int32(self, key: str, val: int) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.INT32)
|
||||
|
||||
def add_float32(self, key: str, val: float) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.FLOAT32)
|
||||
|
||||
def add_uint64(self, key: str, val: int) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.UINT64)
|
||||
|
||||
def add_int64(self, key: str, val: int) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.INT64)
|
||||
|
||||
def add_float64(self, key: str, val: float) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.FLOAT64)
|
||||
|
||||
def add_bool(self, key: str, val: bool) -> None:
|
||||
self.add_key_value(key, val, GGUFValueType.BOOL)
|
||||
|
||||
def add_string(self, key: str, val: str) -> None:
|
||||
if not val:
|
||||
return
|
||||
self.add_key_value(key, val, GGUFValueType.STRING)
|
||||
|
||||
def add_array(self, key: str, val: Sequence[Any]) -> None:
|
||||
if len(val) == 0:
|
||||
return
|
||||
self.add_key_value(key, val, GGUFValueType.ARRAY)
|
||||
|
||||
@staticmethod
|
||||
def ggml_pad(x: int, n: int) -> int:
|
||||
return ((x + n - 1) // n) * n
|
||||
|
||||
def add_tensor_info(
|
||||
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
|
||||
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
|
||||
) -> None:
|
||||
if self.state is not WriterState.NO_FILE:
|
||||
raise ValueError(f'Expected output file to be not yet opened, got {self.state}')
|
||||
|
||||
if any(name in tensors for tensors in self.tensors):
|
||||
raise ValueError(f'Duplicated tensor name {name!r}')
|
||||
|
||||
if raw_dtype is None:
|
||||
if tensor_dtype == np.float16:
|
||||
dtype = GGMLQuantizationType.F16
|
||||
elif tensor_dtype == np.float32:
|
||||
dtype = GGMLQuantizationType.F32
|
||||
elif tensor_dtype == np.float64:
|
||||
dtype = GGMLQuantizationType.F64
|
||||
elif tensor_dtype == np.int8:
|
||||
dtype = GGMLQuantizationType.I8
|
||||
elif tensor_dtype == np.int16:
|
||||
dtype = GGMLQuantizationType.I16
|
||||
elif tensor_dtype == np.int32:
|
||||
dtype = GGMLQuantizationType.I32
|
||||
elif tensor_dtype == np.int64:
|
||||
dtype = GGMLQuantizationType.I64
|
||||
else:
|
||||
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
|
||||
else:
|
||||
dtype = raw_dtype
|
||||
if tensor_dtype == np.uint8:
|
||||
tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
|
||||
|
||||
# make sure there is at least one tensor before splitting
|
||||
if len(self.tensors[-1]) > 0:
|
||||
if ( # split when over tensor limit
|
||||
self.split_max_tensors != 0
|
||||
and len(self.tensors[-1]) >= self.split_max_tensors
|
||||
) or ( # split when over size limit
|
||||
self.split_max_size != 0
|
||||
and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size
|
||||
):
|
||||
self.tensors.append({})
|
||||
|
||||
self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes)
|
||||
|
||||
def add_tensor(
|
||||
self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None,
|
||||
raw_dtype: GGMLQuantizationType | None = None,
|
||||
) -> None:
|
||||
if self.endianess == GGUFEndian.BIG:
|
||||
tensor.byteswap(inplace=True)
|
||||
if self.use_temp_file and self.temp_file is None:
|
||||
fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256 * 1024 * 1024)
|
||||
fp.seek(0)
|
||||
self.temp_file = fp
|
||||
|
||||
shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
|
||||
self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype)
|
||||
|
||||
if self.temp_file is None:
|
||||
self.tensors[-1][name].tensor = tensor
|
||||
return
|
||||
|
||||
tensor.tofile(self.temp_file)
|
||||
self.write_padding(self.temp_file, tensor.nbytes)
|
||||
|
||||
def write_padding(self, fp: IO[bytes], n: int, align: int | None = None) -> None:
|
||||
pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
|
||||
if pad != 0:
|
||||
fp.write(bytes([0] * pad))
|
||||
|
||||
def write_tensor_data(self, tensor: np.ndarray[Any, Any]) -> None:
|
||||
if self.state is not WriterState.TI_DATA and self.state is not WriterState.WEIGHTS:
|
||||
raise ValueError(f'Expected output file to contain tensor info or weights, got {self.state}')
|
||||
assert self.fout is not None
|
||||
|
||||
if self.endianess == GGUFEndian.BIG:
|
||||
tensor.byteswap(inplace=True)
|
||||
|
||||
file_id = -1
|
||||
for i, tensors in enumerate(self.tensors):
|
||||
if len(tensors) > 0:
|
||||
file_id = i
|
||||
break
|
||||
|
||||
fout = self.fout[file_id]
|
||||
|
||||
# pop the first tensor info
|
||||
# TODO: cleaner way to get the first key
|
||||
first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0]
|
||||
ti = self.tensors[file_id].pop(first_tensor_name)
|
||||
assert ti.nbytes == tensor.nbytes
|
||||
|
||||
self.write_padding(fout, fout.tell())
|
||||
tensor.tofile(fout)
|
||||
self.write_padding(fout, tensor.nbytes)
|
||||
|
||||
self.state = WriterState.WEIGHTS
|
||||
|
||||
def write_tensors_to_file(self, *, progress: bool = False) -> None:
|
||||
self.write_ti_data_to_file()
|
||||
|
||||
assert self.fout is not None
|
||||
|
||||
for fout in self.fout:
|
||||
self.write_padding(fout, fout.tell())
|
||||
|
||||
if self.temp_file is None:
|
||||
shard_bar = None
|
||||
bar = None
|
||||
|
||||
if progress:
|
||||
from tqdm import tqdm
|
||||
|
||||
total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
|
||||
|
||||
if len(self.fout) > 1:
|
||||
shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
|
||||
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
|
||||
|
||||
for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
|
||||
if shard_bar is not None:
|
||||
shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
|
||||
total = sum(ti.nbytes for ti in tensors.values())
|
||||
shard_bar.reset(total=(total if total > 0 else None))
|
||||
|
||||
# relying on the fact that Python dicts preserve insertion order (since 3.7)
|
||||
for ti in tensors.values():
|
||||
assert ti.tensor is not None # can only iterate once over the tensors
|
||||
assert ti.tensor.nbytes == ti.nbytes
|
||||
ti.tensor.tofile(fout)
|
||||
if shard_bar is not None:
|
||||
shard_bar.update(ti.nbytes)
|
||||
if bar is not None:
|
||||
bar.update(ti.nbytes)
|
||||
self.write_padding(fout, ti.nbytes)
|
||||
ti.tensor = None
|
||||
else:
|
||||
self.temp_file.seek(0)
|
||||
|
||||
shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1])
|
||||
self.flush()
|
||||
self.temp_file.close()
|
||||
|
||||
self.state = WriterState.WEIGHTS
|
||||
|
||||
def flush(self) -> None:
|
||||
assert self.fout is not None
|
||||
for fout in self.fout:
|
||||
fout.flush()
|
||||
|
||||
def close(self) -> None:
|
||||
if self.fout is not None:
|
||||
for fout in self.fout:
|
||||
fout.close()
|
||||
self.fout = None
|
||||
|
||||
def add_type(self, type_name: str) -> None:
|
||||
self.add_string(Keys.General.TYPE, type_name)
|
||||
|
||||
def add_architecture(self) -> None:
|
||||
self.add_string(Keys.General.ARCHITECTURE, self.arch)
|
||||
|
||||
def add_quantization_version(self, quantization_version: int) -> None:
|
||||
self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version)
|
||||
|
||||
def add_custom_alignment(self, alignment: int) -> None:
|
||||
self.data_alignment = alignment
|
||||
self.add_uint32(Keys.General.ALIGNMENT, alignment)
|
||||
|
||||
def add_file_type(self, ftype: int) -> None:
|
||||
self.add_uint32(Keys.General.FILE_TYPE, ftype)
|
||||
|
||||
def add_name(self, name: str) -> None:
|
||||
self.add_string(Keys.General.NAME, name)
|
||||
|
||||
def add_author(self, author: str) -> None:
|
||||
self.add_string(Keys.General.AUTHOR, author)
|
||||
|
||||
def add_version(self, version: str) -> None:
|
||||
self.add_string(Keys.General.VERSION, version)
|
||||
|
||||
def add_organization(self, organization: str) -> None:
|
||||
self.add_string(Keys.General.ORGANIZATION, organization)
|
||||
|
||||
def add_finetune(self, finetune: str) -> None:
|
||||
self.add_string(Keys.General.FINETUNE, finetune)
|
||||
|
||||
def add_basename(self, basename: str) -> None:
|
||||
self.add_string(Keys.General.BASENAME, basename)
|
||||
|
||||
def add_description(self, description: str) -> None:
|
||||
self.add_string(Keys.General.DESCRIPTION, description)
|
||||
|
||||
def add_quantized_by(self, quantized: str) -> None:
|
||||
self.add_string(Keys.General.QUANTIZED_BY, quantized)
|
||||
|
||||
def add_size_label(self, size_label: str) -> None:
|
||||
self.add_string(Keys.General.SIZE_LABEL, size_label)
|
||||
|
||||
def add_license(self, license: str) -> None:
|
||||
self.add_string(Keys.General.LICENSE, license)
|
||||
|
||||
def add_license_name(self, license: str) -> None:
|
||||
self.add_string(Keys.General.LICENSE_NAME, license)
|
||||
|
||||
def add_license_link(self, license: str) -> None:
|
||||
self.add_string(Keys.General.LICENSE_LINK, license)
|
||||
|
||||
def add_url(self, url: str) -> None:
|
||||
self.add_string(Keys.General.URL, url)
|
||||
|
||||
def add_doi(self, doi: str) -> None:
|
||||
self.add_string(Keys.General.DOI, doi)
|
||||
|
||||
def add_uuid(self, uuid: str) -> None:
|
||||
self.add_string(Keys.General.UUID, uuid)
|
||||
|
||||
def add_repo_url(self, repo_url: str) -> None:
|
||||
self.add_string(Keys.General.REPO_URL, repo_url)
|
||||
|
||||
def add_source_url(self, url: str) -> None:
|
||||
self.add_string(Keys.General.SOURCE_URL, url)
|
||||
|
||||
def add_source_doi(self, doi: str) -> None:
|
||||
self.add_string(Keys.General.SOURCE_DOI, doi)
|
||||
|
||||
def add_source_uuid(self, uuid: str) -> None:
|
||||
self.add_string(Keys.General.SOURCE_UUID, uuid)
|
||||
|
||||
def add_source_repo_url(self, repo_url: str) -> None:
|
||||
self.add_string(Keys.General.SOURCE_REPO_URL, repo_url)
|
||||
|
||||
def add_base_model_count(self, source_count: int) -> None:
|
||||
self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count)
|
||||
|
||||
def add_base_model_name(self, source_id: int, name: str) -> None:
|
||||
self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name)
|
||||
|
||||
def add_base_model_author(self, source_id: int, author: str) -> None:
|
||||
self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author)
|
||||
|
||||
def add_base_model_version(self, source_id: int, version: str) -> None:
|
||||
self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version)
|
||||
|
||||
def add_base_model_organization(self, source_id: int, organization: str) -> None:
|
||||
self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization)
|
||||
|
||||
def add_base_model_url(self, source_id: int, url: str) -> None:
|
||||
self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url)
|
||||
|
||||
def add_base_model_doi(self, source_id: int, doi: str) -> None:
|
||||
self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi)
|
||||
|
||||
def add_base_model_uuid(self, source_id: int, uuid: str) -> None:
|
||||
self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid)
|
||||
|
||||
def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None:
|
||||
self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url)
|
||||
|
||||
def add_tags(self, tags: Sequence[str]) -> None:
|
||||
self.add_array(Keys.General.TAGS, tags)
|
||||
|
||||
def add_languages(self, languages: Sequence[str]) -> None:
|
||||
self.add_array(Keys.General.LANGUAGES, languages)
|
||||
|
||||
def add_datasets(self, datasets: Sequence[str]) -> None:
|
||||
self.add_array(Keys.General.DATASETS, datasets)
|
||||
|
||||
def add_tensor_data_layout(self, layout: str) -> None:
|
||||
self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
||||
|
||||
def add_vocab_size(self, size: int) -> None:
|
||||
self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size)
|
||||
|
||||
def add_context_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.CONTEXT_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_embedding_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EMBEDDING_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_block_count(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
|
||||
|
||||
def add_leading_dense_block_count(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
|
||||
|
||||
def add_feed_forward_length(self, length: int | Sequence[int]) -> None:
|
||||
if isinstance(length, int):
|
||||
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
else:
|
||||
self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_expert_feed_forward_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_expert_shared_feed_forward_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_SHARED_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_parallel_residual(self, use: bool) -> None:
|
||||
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
|
||||
|
||||
def add_decoder_start_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)
|
||||
|
||||
def add_head_count(self, count: int | Sequence[int]) -> None:
|
||||
if isinstance(count, int):
|
||||
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
|
||||
else:
|
||||
self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_head_count_kv(self, count: int | Sequence[int]) -> None:
|
||||
if isinstance(count, int):
|
||||
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
|
||||
else:
|
||||
self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
|
||||
|
||||
def add_key_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_value_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_max_alibi_bias(self, bias: float) -> None:
|
||||
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)
|
||||
|
||||
def add_clamp_kqv(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
|
||||
|
||||
def add_logit_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_attn_logit_softcapping(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
|
||||
|
||||
def add_final_logit_softcapping(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
|
||||
|
||||
def add_expert_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_expert_used_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_expert_shared_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_expert_weights_scale(self, value: float) -> None:
|
||||
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
|
||||
|
||||
def add_layer_norm_eps(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
|
||||
|
||||
def add_layer_norm_rms_eps(self, value: float) -> None:
|
||||
self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)
|
||||
|
||||
def add_causal_attention(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
|
||||
|
||||
def add_q_lora_rank(self, length: int) -> None:
|
||||
self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
|
||||
|
||||
def add_kv_lora_rank(self, length: int) -> None:
|
||||
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
|
||||
|
||||
def add_relative_attn_buckets_count(self, value: int) -> None:
|
||||
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)
|
||||
|
||||
def add_sliding_window(self, value: int) -> None:
|
||||
self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value)
|
||||
|
||||
def add_pooling_type(self, value: PoolingType) -> None:
|
||||
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
|
||||
|
||||
def add_rope_dimension_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_rope_freq_base(self, value: float) -> None:
|
||||
self.add_float32(Keys.Rope.FREQ_BASE.format(arch=self.arch), value)
|
||||
|
||||
def add_rope_scaling_type(self, value: RopeScalingType) -> None:
|
||||
self.add_string(Keys.Rope.SCALING_TYPE.format(arch=self.arch), value.value)
|
||||
|
||||
def add_rope_scaling_factor(self, value: float) -> None:
|
||||
self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
|
||||
|
||||
def add_rope_scaling_attn_factors(self, value: float) -> None:
|
||||
self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)
|
||||
|
||||
def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
|
||||
self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
|
||||
|
||||
def add_rope_scaling_finetuned(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
|
||||
|
||||
def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
|
||||
self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
|
||||
|
||||
def add_ssm_conv_kernel(self, value: int) -> None:
|
||||
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
|
||||
|
||||
def add_ssm_inner_size(self, value: int) -> None:
|
||||
self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value)
|
||||
|
||||
def add_ssm_state_size(self, value: int) -> None:
|
||||
self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value)
|
||||
|
||||
def add_ssm_time_step_rank(self, value: int) -> None:
|
||||
self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value)
|
||||
|
||||
def add_tokenizer_model(self, model: str) -> None:
|
||||
self.add_string(Keys.Tokenizer.MODEL, model)
|
||||
|
||||
def add_tokenizer_pre(self, pre: str) -> None:
|
||||
self.add_string(Keys.Tokenizer.PRE, pre)
|
||||
|
||||
def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
|
||||
self.add_array(Keys.Tokenizer.LIST, tokens)
|
||||
|
||||
def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]) -> None:
|
||||
self.add_array(Keys.Tokenizer.MERGES, merges)
|
||||
|
||||
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
|
||||
self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)
|
||||
|
||||
def add_token_type_count(self, value: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value)
|
||||
|
||||
def add_token_scores(self, scores: Sequence[float]) -> None:
|
||||
self.add_array(Keys.Tokenizer.SCORES, scores)
|
||||
|
||||
def add_bos_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.BOS_ID, id)
|
||||
|
||||
def add_eos_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.EOS_ID, id)
|
||||
|
||||
def add_unk_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.UNK_ID, id)
|
||||
|
||||
def add_sep_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.SEP_ID, id)
|
||||
|
||||
def add_pad_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.PAD_ID, id)
|
||||
|
||||
def add_cls_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.CLS_ID, id)
|
||||
|
||||
def add_mask_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.MASK_ID, id)
|
||||
|
||||
def add_add_bos_token(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.ADD_BOS, value)
|
||||
|
||||
def add_add_eos_token(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.ADD_EOS, value)
|
||||
|
||||
def add_add_space_prefix(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
|
||||
|
||||
def add_remove_extra_whitespaces(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)
|
||||
|
||||
def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
|
||||
self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)
|
||||
|
||||
def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
|
||||
if not isinstance(value, str):
|
||||
template_default = None
|
||||
template_names = set()
|
||||
|
||||
for choice in value:
|
||||
name = choice.get('name', '')
|
||||
template = choice.get('template')
|
||||
|
||||
# Allowing non-alphanumerical characters in template name is probably not a good idea, so filter it
|
||||
name = ''.join((c if c in ascii_letters + digits else '_' for c in name))
|
||||
|
||||
if name and template is not None:
|
||||
if name == 'default':
|
||||
template_default = template
|
||||
else:
|
||||
template_names.add(name)
|
||||
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE_N.format(name=name), template)
|
||||
|
||||
if template_names:
|
||||
self.add_array(Keys.Tokenizer.CHAT_TEMPLATES, list(template_names))
|
||||
|
||||
if template_default is None:
|
||||
return
|
||||
|
||||
value = template_default
|
||||
|
||||
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
|
||||
|
||||
def add_prefix_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.PREFIX_ID, id)
|
||||
|
||||
def add_suffix_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.SUFFIX_ID, id)
|
||||
|
||||
def add_middle_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.MIDDLE_ID, id)
|
||||
|
||||
def add_eot_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.EOT_ID, id)
|
||||
|
||||
def add_eom_token_id(self, id: int) -> None:
|
||||
self.add_uint32(Keys.Tokenizer.EOM_ID, id)
|
||||
|
||||
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
|
||||
pack_prefix = ''
|
||||
if not skip_pack_prefix:
|
||||
pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
|
||||
return struct.pack(f'{pack_prefix}{fmt}', value)
|
||||
|
||||
def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
|
||||
kv_data = bytearray()
|
||||
|
||||
if add_vtype:
|
||||
kv_data += self._pack("I", vtype)
|
||||
|
||||
pack_fmt = self._simple_value_packing.get(vtype)
|
||||
if pack_fmt is not None:
|
||||
kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
|
||||
elif vtype == GGUFValueType.STRING:
|
||||
encoded_val = val.encode("utf-8") if isinstance(val, str) else val
|
||||
kv_data += self._pack("Q", len(encoded_val))
|
||||
kv_data += encoded_val
|
||||
elif vtype == GGUFValueType.ARRAY:
|
||||
|
||||
if not isinstance(val, Sequence):
|
||||
raise ValueError("Invalid GGUF metadata array, expecting sequence")
|
||||
|
||||
if len(val) == 0:
|
||||
raise ValueError("Invalid GGUF metadata array. Empty array")
|
||||
|
||||
if isinstance(val, bytes):
|
||||
ltype = GGUFValueType.UINT8
|
||||
else:
|
||||
ltype = GGUFValueType.get_type(val[0])
|
||||
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
|
||||
raise ValueError("All items in a GGUF array should be of the same type")
|
||||
kv_data += self._pack("I", ltype)
|
||||
kv_data += self._pack("Q", len(val))
|
||||
for item in val:
|
||||
kv_data += self._pack_val(item, ltype, add_vtype=False)
|
||||
else:
|
||||
raise ValueError("Invalid GGUF metadata value type or value")
|
||||
|
||||
return kv_data
|
||||
|
||||
@staticmethod
|
||||
def format_n_bytes_to_str(num: int) -> str:
|
||||
if num == 0:
|
||||
return "negligible - metadata only"
|
||||
fnum = float(num)
|
||||
for unit in ("", "K", "M", "G"):
|
||||
if abs(fnum) < 1000.0:
|
||||
return f"{fnum:3.1f}{unit}"
|
||||
fnum /= 1000.0
|
||||
return f"{fnum:.1f}T - over 1TB, split recommended"
|
||||
213
packages_3rdparty/gguf/lazy.py
vendored
Executable file
213
packages_3rdparty/gguf/lazy.py
vendored
Executable file
@@ -0,0 +1,213 @@
|
||||
from __future__ import annotations
|
||||
from abc import ABC, ABCMeta, abstractmethod
|
||||
|
||||
import logging
|
||||
from typing import Any, Callable
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import DTypeLike
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LazyMeta(ABCMeta):
|
||||
|
||||
def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
|
||||
def __getattr__(self, name: str) -> Any:
|
||||
meta_attr = getattr(self._meta, name)
|
||||
if callable(meta_attr):
|
||||
return type(self)._wrap_fn(
|
||||
(lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
|
||||
use_self=self,
|
||||
)
|
||||
elif isinstance(meta_attr, self._tensor_type):
|
||||
# e.g. self.T with torch.Tensor should still be wrapped
|
||||
return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
|
||||
else:
|
||||
# no need to wrap non-tensor properties,
|
||||
# and they likely don't depend on the actual contents of the tensor
|
||||
return meta_attr
|
||||
|
||||
namespace["__getattr__"] = __getattr__
|
||||
|
||||
# need to make a builder for the wrapped wrapper to copy the name,
|
||||
# or else it fails with very cryptic error messages,
|
||||
# because somehow the same string would end up in every closures
|
||||
def mk_wrap(op_name: str, *, meta_noop: bool = False):
|
||||
# need to wrap the wrapper to get self
|
||||
def wrapped_special_op(self, *args, **kwargs):
|
||||
return type(self)._wrap_fn(
|
||||
getattr(type(self)._tensor_type, op_name),
|
||||
meta_noop=meta_noop,
|
||||
)(self, *args, **kwargs)
|
||||
return wrapped_special_op
|
||||
|
||||
# special methods bypass __getattr__, so they need to be added manually
|
||||
# ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
|
||||
# NOTE: doing this from a metaclass is very convenient
|
||||
# TODO: make this even more comprehensive
|
||||
for binary_op in (
|
||||
"lt", "le", "eq", "ne", "ge", "gt", "not"
|
||||
"abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul",
|
||||
"neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor",
|
||||
"iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor",
|
||||
"radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor",
|
||||
):
|
||||
attr_name = f"__{binary_op}__"
|
||||
# the result of these operators usually has the same shape and dtype as the input,
|
||||
# so evaluation on the meta tensor can be skipped.
|
||||
namespace[attr_name] = mk_wrap(attr_name, meta_noop=True)
|
||||
|
||||
for special_op in (
|
||||
"getitem", "setitem", "len",
|
||||
):
|
||||
attr_name = f"__{special_op}__"
|
||||
namespace[attr_name] = mk_wrap(attr_name, meta_noop=False)
|
||||
|
||||
return super().__new__(cls, name, bases, namespace, **kwargs)
|
||||
|
||||
|
||||
# Tree of lazy tensors
|
||||
class LazyBase(ABC, metaclass=LazyMeta):
|
||||
_tensor_type: type
|
||||
_meta: Any
|
||||
_data: Any | None
|
||||
_args: tuple
|
||||
_kwargs: dict[str, Any]
|
||||
_func: Callable[[Any], Any] | None
|
||||
|
||||
def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None):
|
||||
super().__init__()
|
||||
self._meta = meta
|
||||
self._data = data
|
||||
self._args = args
|
||||
self._kwargs = kwargs if kwargs is not None else {}
|
||||
self._func = func
|
||||
assert self._func is not None or self._data is not None
|
||||
|
||||
def __init_subclass__(cls) -> None:
|
||||
if "_tensor_type" not in cls.__dict__:
|
||||
raise TypeError(f"property '_tensor_type' must be defined for {cls!r}")
|
||||
return super().__init_subclass__()
|
||||
|
||||
@staticmethod
|
||||
def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
|
||||
# TODO: dict and set
|
||||
if isinstance(o, (list, tuple)):
|
||||
L = []
|
||||
for item in o:
|
||||
L.append(LazyBase._recurse_apply(item, fn))
|
||||
if isinstance(o, tuple):
|
||||
L = tuple(L)
|
||||
return L
|
||||
elif isinstance(o, LazyBase):
|
||||
return fn(o)
|
||||
else:
|
||||
return o
|
||||
|
||||
@classmethod
|
||||
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
|
||||
def wrapped_fn(*args, **kwargs):
|
||||
if kwargs is None:
|
||||
kwargs = {}
|
||||
args = ((use_self,) if use_self is not None else ()) + args
|
||||
|
||||
meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)
|
||||
# TODO: maybe handle tensors in kwargs too
|
||||
|
||||
if isinstance(meta_noop, bool) and not meta_noop:
|
||||
try:
|
||||
res = fn(*meta_args, **kwargs)
|
||||
except NotImplementedError:
|
||||
# running some operations on PyTorch's Meta tensors can cause this exception
|
||||
res = None
|
||||
else:
|
||||
# some operators don't need to actually run on the meta tensors
|
||||
assert len(args) > 0
|
||||
res = args[0]
|
||||
assert isinstance(res, cls)
|
||||
res = res._meta
|
||||
# allow operations to override the dtype and shape
|
||||
if meta_noop is not True:
|
||||
if isinstance(meta_noop, tuple):
|
||||
dtype, shape = meta_noop
|
||||
assert callable(shape)
|
||||
res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
|
||||
else:
|
||||
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
|
||||
|
||||
if isinstance(res, cls._tensor_type):
|
||||
return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
|
||||
else:
|
||||
del res # not needed
|
||||
# non-tensor return likely relies on the contents of the args
|
||||
# (e.g. the result of torch.equal)
|
||||
eager_args = cls.to_eager(args)
|
||||
return fn(*eager_args, **kwargs)
|
||||
return wrapped_fn
|
||||
|
||||
@classmethod
|
||||
def to_eager(cls, t: Any) -> Any:
|
||||
def simple_to_eager(_t: LazyBase) -> Any:
|
||||
if _t._data is not None:
|
||||
return _t._data
|
||||
|
||||
# NOTE: there's a recursion limit in Python (usually 1000)
|
||||
|
||||
assert _t._func is not None
|
||||
_t._args = cls._recurse_apply(_t._args, simple_to_eager)
|
||||
_t._data = _t._func(*_t._args, **_t._kwargs)
|
||||
# sanity check
|
||||
assert _t._data is not None
|
||||
assert _t._data.dtype == _t._meta.dtype
|
||||
assert _t._data.shape == _t._meta.shape
|
||||
|
||||
return _t._data
|
||||
|
||||
# recurse into lists and/or tuples, keeping their structure
|
||||
return cls._recurse_apply(t, simple_to_eager)
|
||||
|
||||
@classmethod
|
||||
def eager_to_meta(cls, t: Any) -> Any:
|
||||
return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
|
||||
|
||||
# must be overridden, meta tensor init is backend-specific
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
|
||||
|
||||
@classmethod
|
||||
def from_eager(cls, t: Any) -> Any:
|
||||
if type(t) is cls:
|
||||
# already lazy
|
||||
return t
|
||||
elif isinstance(t, cls._tensor_type):
|
||||
return cls(meta=cls.eager_to_meta(t), data=t)
|
||||
else:
|
||||
return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}")
|
||||
|
||||
|
||||
class LazyNumpyTensor(LazyBase):
|
||||
_tensor_type = np.ndarray
|
||||
|
||||
shape: tuple[int, ...] # Makes the type checker happy in quants.py
|
||||
|
||||
@classmethod
|
||||
def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]:
|
||||
# The initial idea was to use np.nan as the fill value,
|
||||
# but non-float types like np.int16 can't use that.
|
||||
# So zero it is.
|
||||
cheat = np.zeros(1, dtype)
|
||||
return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
|
||||
|
||||
def astype(self, dtype, *args, **kwargs):
|
||||
meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
|
||||
full_args = (self, dtype,) + args
|
||||
return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs)))
|
||||
|
||||
def tofile(self, *args, **kwargs):
|
||||
eager = LazyNumpyTensor.to_eager(self)
|
||||
return eager.tofile(*args, **kwargs)
|
||||
|
||||
# TODO: __array_function__
|
||||
510
packages_3rdparty/gguf/metadata.py
vendored
Executable file
510
packages_3rdparty/gguf/metadata.py
vendored
Executable file
@@ -0,0 +1,510 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
import json
|
||||
import yaml
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal, Optional
|
||||
from dataclasses import dataclass
|
||||
|
||||
from .constants import Keys
|
||||
|
||||
import gguf
|
||||
|
||||
logger = logging.getLogger("metadata")
|
||||
|
||||
|
||||
@dataclass
|
||||
class Metadata:
|
||||
# Authorship Metadata to be written to GGUF KV Store
|
||||
name: Optional[str] = None
|
||||
author: Optional[str] = None
|
||||
version: Optional[str] = None
|
||||
organization: Optional[str] = None
|
||||
finetune: Optional[str] = None
|
||||
basename: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
quantized_by: Optional[str] = None
|
||||
size_label: Optional[str] = None
|
||||
url: Optional[str] = None
|
||||
doi: Optional[str] = None
|
||||
uuid: Optional[str] = None
|
||||
repo_url: Optional[str] = None
|
||||
source_url: Optional[str] = None
|
||||
source_doi: Optional[str] = None
|
||||
source_uuid: Optional[str] = None
|
||||
source_repo_url: Optional[str] = None
|
||||
license: Optional[str] = None
|
||||
license_name: Optional[str] = None
|
||||
license_link: Optional[str] = None
|
||||
base_models: Optional[list[dict]] = None
|
||||
tags: Optional[list[str]] = None
|
||||
languages: Optional[list[str]] = None
|
||||
datasets: Optional[list[str]] = None
|
||||
|
||||
@staticmethod
|
||||
def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata:
|
||||
# This grabs as many contextual authorship metadata as possible from the model repository
|
||||
# making any conversion as required to match the gguf kv store metadata format
|
||||
# as well as giving users the ability to override any authorship metadata that may be incorrect
|
||||
|
||||
# Create a new Metadata instance
|
||||
metadata = Metadata()
|
||||
|
||||
model_card = Metadata.load_model_card(model_path)
|
||||
hf_params = Metadata.load_hf_parameters(model_path)
|
||||
# TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter
|
||||
|
||||
# heuristics
|
||||
metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
|
||||
|
||||
# Metadata Override File Provided
|
||||
# This is based on LLM_KV_NAMES mapping in llama.cpp
|
||||
metadata_override = Metadata.load_metadata_override(metadata_override_path)
|
||||
|
||||
metadata.name = metadata_override.get(Keys.General.NAME, metadata.name)
|
||||
metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author)
|
||||
metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version)
|
||||
metadata.organization = metadata_override.get(Keys.General.ORGANIZATION, metadata.organization)
|
||||
|
||||
metadata.finetune = metadata_override.get(Keys.General.FINETUNE, metadata.finetune)
|
||||
metadata.basename = metadata_override.get(Keys.General.BASENAME, metadata.basename)
|
||||
|
||||
metadata.description = metadata_override.get(Keys.General.DESCRIPTION, metadata.description)
|
||||
metadata.quantized_by = metadata_override.get(Keys.General.QUANTIZED_BY, metadata.quantized_by)
|
||||
|
||||
metadata.size_label = metadata_override.get(Keys.General.SIZE_LABEL, metadata.size_label)
|
||||
metadata.license_name = metadata_override.get(Keys.General.LICENSE_NAME, metadata.license_name)
|
||||
metadata.license_link = metadata_override.get(Keys.General.LICENSE_LINK, metadata.license_link)
|
||||
|
||||
metadata.url = metadata_override.get(Keys.General.URL, metadata.url)
|
||||
metadata.doi = metadata_override.get(Keys.General.DOI, metadata.doi)
|
||||
metadata.uuid = metadata_override.get(Keys.General.UUID, metadata.uuid)
|
||||
metadata.repo_url = metadata_override.get(Keys.General.REPO_URL, metadata.repo_url)
|
||||
|
||||
metadata.source_url = metadata_override.get(Keys.General.SOURCE_URL, metadata.source_url)
|
||||
metadata.source_doi = metadata_override.get(Keys.General.SOURCE_DOI, metadata.source_doi)
|
||||
metadata.source_uuid = metadata_override.get(Keys.General.SOURCE_UUID, metadata.source_uuid)
|
||||
metadata.source_repo_url = metadata_override.get(Keys.General.SOURCE_REPO_URL, metadata.source_repo_url)
|
||||
|
||||
# Base Models is received here as an array of models
|
||||
metadata.base_models = metadata_override.get("general.base_models", metadata.base_models)
|
||||
|
||||
metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags)
|
||||
metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages)
|
||||
metadata.datasets = metadata_override.get(Keys.General.DATASETS, metadata.datasets)
|
||||
|
||||
# Direct Metadata Override (via direct cli argument)
|
||||
if model_name is not None:
|
||||
metadata.name = model_name
|
||||
|
||||
return metadata
|
||||
|
||||
@staticmethod
|
||||
def load_metadata_override(metadata_override_path: Optional[Path] = None) -> dict[str, Any]:
|
||||
if metadata_override_path is None or not metadata_override_path.is_file():
|
||||
return {}
|
||||
|
||||
with open(metadata_override_path, "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
|
||||
@staticmethod
|
||||
def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]:
|
||||
if model_path is None or not model_path.is_dir():
|
||||
return {}
|
||||
|
||||
model_card_path = model_path / "README.md"
|
||||
|
||||
if not model_card_path.is_file():
|
||||
return {}
|
||||
|
||||
# The model card metadata is assumed to always be in YAML
|
||||
# ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473
|
||||
with open(model_card_path, "r", encoding="utf-8") as f:
|
||||
if f.readline() == "---\n":
|
||||
raw = f.read().partition("---\n")[0]
|
||||
data = yaml.safe_load(raw)
|
||||
if isinstance(data, dict):
|
||||
return data
|
||||
else:
|
||||
logger.error(f"while reading YAML model card frontmatter, data is {type(data)} instead of dict")
|
||||
return {}
|
||||
else:
|
||||
return {}
|
||||
|
||||
@staticmethod
|
||||
def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]:
|
||||
if model_path is None or not model_path.is_dir():
|
||||
return {}
|
||||
|
||||
config_path = model_path / "config.json"
|
||||
|
||||
if not config_path.is_file():
|
||||
return {}
|
||||
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
|
||||
@staticmethod
|
||||
def id_to_title(string):
|
||||
# Convert capitalization into title form unless acronym or version number
|
||||
return ' '.join([w.title() if w.islower() and not re.match(r'^(v\d+(?:\.\d+)*|\d.*)$', w) else w for w in string.strip().replace('-', ' ').split()])
|
||||
|
||||
@staticmethod
|
||||
def get_model_id_components(model_id: Optional[str] = None, total_params: int = 0) -> tuple[str | None, str | None, str | None, str | None, str | None, str | None]:
|
||||
# Huggingface often store model id as '<org>/<model name>'
|
||||
# so let's parse it and apply some heuristics if possible for model name components
|
||||
|
||||
if model_id is None:
|
||||
# model ID missing
|
||||
return None, None, None, None, None, None
|
||||
|
||||
if ' ' in model_id:
|
||||
# model ID is actually a normal human sentence
|
||||
# which means its most likely a normal model name only
|
||||
# not part of the hugging face naming standard, but whatever
|
||||
return model_id, None, None, None, None, None
|
||||
|
||||
if '/' in model_id:
|
||||
# model ID (huggingface style)
|
||||
org_component, model_full_name_component = model_id.split('/', 1)
|
||||
else:
|
||||
# model ID but missing org components
|
||||
org_component, model_full_name_component = None, model_id
|
||||
|
||||
# Check if we erroneously matched against './' or '../' etc...
|
||||
if org_component is not None and len(org_component) > 0 and org_component[0] == '.':
|
||||
org_component = None
|
||||
|
||||
name_parts: list[str] = model_full_name_component.split('-')
|
||||
|
||||
# Remove empty parts
|
||||
for i in reversed(range(len(name_parts))):
|
||||
if len(name_parts[i]) == 0:
|
||||
del name_parts[i]
|
||||
|
||||
name_types: list[
|
||||
set[Literal["basename", "size_label", "finetune", "version", "type"]]
|
||||
] = [set() for _ in name_parts]
|
||||
|
||||
# Annotate the name
|
||||
for i, part in enumerate(name_parts):
|
||||
# Version
|
||||
if re.fullmatch(r'(v|iter)?\d+([.]\d+)*', part, re.IGNORECASE):
|
||||
name_types[i].add("version")
|
||||
# Quant type (should not be there for base models, but still annotated)
|
||||
elif re.fullmatch(r'i?q\d(_\w)*|b?fp?(16|32)', part, re.IGNORECASE):
|
||||
name_types[i].add("type")
|
||||
name_parts[i] = part.upper()
|
||||
# Model size
|
||||
elif i > 0 and re.fullmatch(r'(([A]|\d+[x])?\d+([._]\d+)?[KMBT][\d]?|small|mini|medium|large|x?xl)', part, re.IGNORECASE):
|
||||
part = part.replace("_", ".")
|
||||
# Handle weird bloom-7b1 notation
|
||||
if part[-1].isdecimal():
|
||||
part = part[:-2] + "." + part[-1] + part[-2]
|
||||
# Normalize the size suffixes
|
||||
if len(part) > 1 and part[-2].isdecimal():
|
||||
if part[-1] in "kmbt":
|
||||
part = part[:-1] + part[-1].upper()
|
||||
if total_params != 0:
|
||||
try:
|
||||
label_params = float(part[:-1]) * pow(1000, " KMBT".find(part[-1]))
|
||||
# Only use it as a size label if it's close or bigger than the model size
|
||||
# Note that LoRA adapters don't necessarily include all layers,
|
||||
# so this is why bigger label sizes are accepted.
|
||||
# Do not use the size label when it's smaller than 1/8 of the model size
|
||||
if (total_params < 0 and label_params < abs(total_params) // 8) or (
|
||||
# Check both directions when the current model isn't a LoRA adapter
|
||||
total_params > 0 and abs(label_params - total_params) > 7 * total_params // 8
|
||||
):
|
||||
# Likely a context length
|
||||
name_types[i].add("finetune")
|
||||
# Lowercase the size when it's a context length
|
||||
part = part[:-1] + part[-1].lower()
|
||||
except ValueError:
|
||||
# Failed to convert the size label to float, use it anyway
|
||||
pass
|
||||
if len(name_types[i]) == 0:
|
||||
name_types[i].add("size_label")
|
||||
name_parts[i] = part
|
||||
# Some easy to recognize finetune names
|
||||
elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE):
|
||||
if total_params < 0 and part.lower() == "lora":
|
||||
# ignore redundant "lora" in the finetune part when the output is a lora adapter
|
||||
name_types[i].add("type")
|
||||
else:
|
||||
name_types[i].add("finetune")
|
||||
|
||||
# Ignore word-based size labels when there is at least a number-based one present
|
||||
# TODO: should word-based size labels always be removed instead?
|
||||
if any(c.isdecimal() for n, t in zip(name_parts, name_types) if "size_label" in t for c in n):
|
||||
for n, t in zip(name_parts, name_types):
|
||||
if "size_label" in t:
|
||||
if all(c.isalpha() for c in n):
|
||||
t.remove("size_label")
|
||||
|
||||
at_start = True
|
||||
# Find the basename through the annotated name
|
||||
for part, t in zip(name_parts, name_types):
|
||||
if at_start and ((len(t) == 0 and part[0].isalpha()) or "version" in t):
|
||||
t.add("basename")
|
||||
else:
|
||||
if at_start:
|
||||
at_start = False
|
||||
if len(t) == 0:
|
||||
t.add("finetune")
|
||||
|
||||
# Remove the basename annotation from trailing version
|
||||
for part, t in zip(reversed(name_parts), reversed(name_types)):
|
||||
if "basename" in t and len(t) > 1:
|
||||
t.remove("basename")
|
||||
else:
|
||||
break
|
||||
|
||||
basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None
|
||||
# Deduplicate size labels using order-preserving 'dict' ('set' seems to sort the keys)
|
||||
size_label = "-".join(dict.fromkeys(s for s, t in zip(name_parts, name_types) if "size_label" in t).keys()) or None
|
||||
finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None
|
||||
# TODO: should the basename version always be excluded?
|
||||
# NOTE: multiple finetune versions are joined together
|
||||
version = "-".join(v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t) or None
|
||||
|
||||
if size_label is None and finetune is None and version is None:
|
||||
# Too ambiguous, output nothing
|
||||
basename = None
|
||||
|
||||
return model_full_name_component, org_component, basename, finetune, version, size_label
|
||||
|
||||
@staticmethod
|
||||
def apply_metadata_heuristic(metadata: Metadata, model_card: Optional[dict] = None, hf_params: Optional[dict] = None, model_path: Optional[Path] = None, total_params: int = 0) -> Metadata:
|
||||
# Reference Model Card Metadata: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
||||
|
||||
# Model Card Heuristics
|
||||
########################
|
||||
if model_card is not None:
|
||||
|
||||
def use_model_card_metadata(metadata_key: str, model_card_key: str):
|
||||
if model_card_key in model_card and getattr(metadata, metadata_key, None) is None:
|
||||
setattr(metadata, metadata_key, model_card.get(model_card_key))
|
||||
|
||||
def use_array_model_card_metadata(metadata_key: str, model_card_key: str):
|
||||
# Note: Will append rather than replace if already exist
|
||||
tags_value = model_card.get(model_card_key, None)
|
||||
if tags_value is None:
|
||||
return
|
||||
|
||||
current_value = getattr(metadata, metadata_key, None)
|
||||
if current_value is None:
|
||||
current_value = []
|
||||
|
||||
if isinstance(tags_value, str):
|
||||
current_value.append(tags_value)
|
||||
elif isinstance(tags_value, list):
|
||||
current_value.extend(tags_value)
|
||||
|
||||
setattr(metadata, metadata_key, current_value)
|
||||
|
||||
# LLAMA.cpp's direct internal convention
|
||||
# (Definitely not part of hugging face formal/informal standard)
|
||||
#########################################
|
||||
use_model_card_metadata("name", "name")
|
||||
use_model_card_metadata("author", "author")
|
||||
use_model_card_metadata("version", "version")
|
||||
use_model_card_metadata("organization", "organization")
|
||||
use_model_card_metadata("description", "description")
|
||||
use_model_card_metadata("finetune", "finetune")
|
||||
use_model_card_metadata("basename", "basename")
|
||||
use_model_card_metadata("size_label", "size_label")
|
||||
use_model_card_metadata("source_url", "url")
|
||||
use_model_card_metadata("source_doi", "doi")
|
||||
use_model_card_metadata("source_uuid", "uuid")
|
||||
use_model_card_metadata("source_repo_url", "repo_url")
|
||||
|
||||
# LLAMA.cpp's huggingface style convention
|
||||
# (Definitely not part of hugging face formal/informal standard... but with model_ appended to match their style)
|
||||
###########################################
|
||||
use_model_card_metadata("name", "model_name")
|
||||
use_model_card_metadata("author", "model_author")
|
||||
use_model_card_metadata("version", "model_version")
|
||||
use_model_card_metadata("organization", "model_organization")
|
||||
use_model_card_metadata("description", "model_description")
|
||||
use_model_card_metadata("finetune", "model_finetune")
|
||||
use_model_card_metadata("basename", "model_basename")
|
||||
use_model_card_metadata("size_label", "model_size_label")
|
||||
use_model_card_metadata("source_url", "model_url")
|
||||
use_model_card_metadata("source_doi", "model_doi")
|
||||
use_model_card_metadata("source_uuid", "model_uuid")
|
||||
use_model_card_metadata("source_repo_url", "model_repo_url")
|
||||
|
||||
# Hugging Face Direct Convention
|
||||
#################################
|
||||
|
||||
# Not part of huggingface model card standard but notice some model creator using it
|
||||
# such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
|
||||
use_model_card_metadata("name", "model_name")
|
||||
use_model_card_metadata("author", "model_creator")
|
||||
use_model_card_metadata("basename", "model_type")
|
||||
|
||||
if "base_model" in model_card:
|
||||
# This represents the parent models that this is based on
|
||||
# Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges)
|
||||
# Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md
|
||||
metadata_base_models = []
|
||||
base_model_value = model_card.get("base_model", None)
|
||||
|
||||
if base_model_value is not None:
|
||||
if isinstance(base_model_value, str):
|
||||
metadata_base_models.append(base_model_value)
|
||||
elif isinstance(base_model_value, list):
|
||||
metadata_base_models.extend(base_model_value)
|
||||
|
||||
if metadata.base_models is None:
|
||||
metadata.base_models = []
|
||||
|
||||
for model_id in metadata_base_models:
|
||||
# NOTE: model size of base model is assumed to be similar to the size of the current model
|
||||
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
|
||||
base_model = {}
|
||||
if model_full_name_component is not None:
|
||||
base_model["name"] = Metadata.id_to_title(model_full_name_component)
|
||||
if org_component is not None:
|
||||
base_model["organization"] = Metadata.id_to_title(org_component)
|
||||
if version is not None:
|
||||
base_model["version"] = version
|
||||
if org_component is not None and model_full_name_component is not None:
|
||||
base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}"
|
||||
metadata.base_models.append(base_model)
|
||||
|
||||
use_model_card_metadata("license", "license")
|
||||
use_model_card_metadata("license_name", "license_name")
|
||||
use_model_card_metadata("license_link", "license_link")
|
||||
|
||||
use_array_model_card_metadata("tags", "tags")
|
||||
use_array_model_card_metadata("tags", "pipeline_tag")
|
||||
|
||||
use_array_model_card_metadata("languages", "languages")
|
||||
use_array_model_card_metadata("languages", "language")
|
||||
|
||||
use_array_model_card_metadata("datasets", "datasets")
|
||||
use_array_model_card_metadata("datasets", "dataset")
|
||||
|
||||
# Hugging Face Parameter Heuristics
|
||||
####################################
|
||||
|
||||
if hf_params is not None:
|
||||
|
||||
hf_name_or_path = hf_params.get("_name_or_path")
|
||||
if hf_name_or_path is not None and hf_name_or_path.count('/') <= 1:
|
||||
# Use _name_or_path only if its actually a model name and not some computer path
|
||||
# e.g. 'meta-llama/Llama-2-7b-hf'
|
||||
model_id = hf_name_or_path
|
||||
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
|
||||
if metadata.name is None and model_full_name_component is not None:
|
||||
metadata.name = Metadata.id_to_title(model_full_name_component)
|
||||
if metadata.organization is None and org_component is not None:
|
||||
metadata.organization = Metadata.id_to_title(org_component)
|
||||
if metadata.basename is None and basename is not None:
|
||||
metadata.basename = basename
|
||||
if metadata.finetune is None and finetune is not None:
|
||||
metadata.finetune = finetune
|
||||
if metadata.version is None and version is not None:
|
||||
metadata.version = version
|
||||
if metadata.size_label is None and size_label is not None:
|
||||
metadata.size_label = size_label
|
||||
|
||||
# Directory Folder Name Fallback Heuristics
|
||||
############################################
|
||||
if model_path is not None:
|
||||
model_id = model_path.name
|
||||
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
|
||||
if metadata.name is None and model_full_name_component is not None:
|
||||
metadata.name = Metadata.id_to_title(model_full_name_component)
|
||||
if metadata.organization is None and org_component is not None:
|
||||
metadata.organization = Metadata.id_to_title(org_component)
|
||||
if metadata.basename is None and basename is not None:
|
||||
metadata.basename = basename
|
||||
if metadata.finetune is None and finetune is not None:
|
||||
metadata.finetune = finetune
|
||||
if metadata.version is None and version is not None:
|
||||
metadata.version = version
|
||||
if metadata.size_label is None and size_label is not None:
|
||||
metadata.size_label = size_label
|
||||
|
||||
return metadata
|
||||
|
||||
def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter):
|
||||
assert self.name is not None
|
||||
gguf_writer.add_name(self.name)
|
||||
|
||||
if self.author is not None:
|
||||
gguf_writer.add_author(self.author)
|
||||
if self.version is not None:
|
||||
gguf_writer.add_version(self.version)
|
||||
if self.organization is not None:
|
||||
gguf_writer.add_organization(self.organization)
|
||||
|
||||
if self.finetune is not None:
|
||||
gguf_writer.add_finetune(self.finetune)
|
||||
if self.basename is not None:
|
||||
gguf_writer.add_basename(self.basename)
|
||||
|
||||
if self.description is not None:
|
||||
gguf_writer.add_description(self.description)
|
||||
if self.quantized_by is not None:
|
||||
gguf_writer.add_quantized_by(self.quantized_by)
|
||||
|
||||
if self.size_label is not None:
|
||||
gguf_writer.add_size_label(self.size_label)
|
||||
|
||||
if self.license is not None:
|
||||
gguf_writer.add_license(self.license)
|
||||
if self.license_name is not None:
|
||||
gguf_writer.add_license_name(self.license_name)
|
||||
if self.license_link is not None:
|
||||
gguf_writer.add_license_link(self.license_link)
|
||||
|
||||
if self.url is not None:
|
||||
gguf_writer.add_url(self.url)
|
||||
if self.doi is not None:
|
||||
gguf_writer.add_doi(self.doi)
|
||||
if self.uuid is not None:
|
||||
gguf_writer.add_uuid(self.uuid)
|
||||
if self.repo_url is not None:
|
||||
gguf_writer.add_repo_url(self.repo_url)
|
||||
|
||||
if self.source_url is not None:
|
||||
gguf_writer.add_source_url(self.source_url)
|
||||
if self.source_doi is not None:
|
||||
gguf_writer.add_source_doi(self.source_doi)
|
||||
if self.source_uuid is not None:
|
||||
gguf_writer.add_source_uuid(self.source_uuid)
|
||||
if self.source_repo_url is not None:
|
||||
gguf_writer.add_source_repo_url(self.source_repo_url)
|
||||
|
||||
if self.base_models is not None:
|
||||
gguf_writer.add_base_model_count(len(self.base_models))
|
||||
for key, base_model_entry in enumerate(self.base_models):
|
||||
if "name" in base_model_entry:
|
||||
gguf_writer.add_base_model_name(key, base_model_entry["name"])
|
||||
if "author" in base_model_entry:
|
||||
gguf_writer.add_base_model_author(key, base_model_entry["author"])
|
||||
if "version" in base_model_entry:
|
||||
gguf_writer.add_base_model_version(key, base_model_entry["version"])
|
||||
if "organization" in base_model_entry:
|
||||
gguf_writer.add_base_model_organization(key, base_model_entry["organization"])
|
||||
if "url" in base_model_entry:
|
||||
gguf_writer.add_base_model_url(key, base_model_entry["url"])
|
||||
if "doi" in base_model_entry:
|
||||
gguf_writer.add_base_model_doi(key, base_model_entry["doi"])
|
||||
if "uuid" in base_model_entry:
|
||||
gguf_writer.add_base_model_uuid(key, base_model_entry["uuid"])
|
||||
if "repo_url" in base_model_entry:
|
||||
gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"])
|
||||
|
||||
if self.tags is not None:
|
||||
gguf_writer.add_tags(self.tags)
|
||||
if self.languages is not None:
|
||||
gguf_writer.add_languages(self.languages)
|
||||
if self.datasets is not None:
|
||||
gguf_writer.add_datasets(self.datasets)
|
||||
1524
packages_3rdparty/gguf/quants.py
vendored
Executable file
1524
packages_3rdparty/gguf/quants.py
vendored
Executable file
File diff suppressed because it is too large
Load Diff
76
packages_3rdparty/gguf/quick_4bits_ops.py
vendored
Executable file
76
packages_3rdparty/gguf/quick_4bits_ops.py
vendored
Executable file
@@ -0,0 +1,76 @@
|
||||
# By Forge
|
||||
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def native_unpack_4x4bits_in_1x16bits_to_4x8bits_in_1x32bits(x):
|
||||
x = x.view(torch.uint8).view(x.size(0), -1)
|
||||
unpacked = torch.stack([x & 15, x >> 4], dim=-1)
|
||||
reshaped = unpacked.view(x.size(0), -1)
|
||||
reshaped = reshaped.view(torch.int8) - 8
|
||||
return reshaped.view(torch.int32)
|
||||
|
||||
|
||||
def native_unpack_4x4bits_in_1x16bits_to_4x8bits_in_1x32bits_u(x):
|
||||
x = x.view(torch.uint8).view(x.size(0), -1)
|
||||
unpacked = torch.stack([x & 15, x >> 4], dim=-1)
|
||||
reshaped = unpacked.view(x.size(0), -1)
|
||||
return reshaped.view(torch.int32)
|
||||
|
||||
|
||||
disable_all_optimizations = False
|
||||
|
||||
if not hasattr(torch, 'uint16'):
|
||||
disable_all_optimizations = True
|
||||
|
||||
if disable_all_optimizations:
|
||||
print('You are using PyTorch below version 2.3. Some optimizations will be disabled.')
|
||||
|
||||
if not disable_all_optimizations:
|
||||
native_4bits_lookup_table = native_unpack_4x4bits_in_1x16bits_to_4x8bits_in_1x32bits(torch.arange(start=0, end=256*256, dtype=torch.long).to(torch.uint16))[:, 0]
|
||||
native_4bits_lookup_table_u = native_unpack_4x4bits_in_1x16bits_to_4x8bits_in_1x32bits_u(torch.arange(start=0, end=256*256, dtype=torch.long).to(torch.uint16))[:, 0]
|
||||
|
||||
|
||||
def quick_unpack_4bits(x):
|
||||
if disable_all_optimizations:
|
||||
return torch.stack([x & 15, x >> 4], dim=-1).view(x.size(0), -1).view(torch.int8) - 8
|
||||
|
||||
global native_4bits_lookup_table
|
||||
|
||||
s0 = x.size(0)
|
||||
x = x.view(torch.uint16)
|
||||
|
||||
if native_4bits_lookup_table.device != x.device:
|
||||
native_4bits_lookup_table = native_4bits_lookup_table.to(device=x.device)
|
||||
|
||||
y = torch.index_select(input=native_4bits_lookup_table, dim=0, index=x.to(dtype=torch.int32).flatten())
|
||||
y = y.view(torch.int8)
|
||||
y = y.view(s0, -1)
|
||||
|
||||
return y
|
||||
|
||||
|
||||
def quick_unpack_4bits_u(x):
|
||||
if disable_all_optimizations:
|
||||
return torch.stack([x & 15, x >> 4], dim=-1).view(x.size(0), -1)
|
||||
|
||||
global native_4bits_lookup_table_u
|
||||
|
||||
s0 = x.size(0)
|
||||
x = x.view(torch.uint16)
|
||||
|
||||
if native_4bits_lookup_table_u.device != x.device:
|
||||
native_4bits_lookup_table_u = native_4bits_lookup_table_u.to(device=x.device)
|
||||
|
||||
y = torch.index_select(input=native_4bits_lookup_table_u, dim=0, index=x.to(dtype=torch.int32).flatten())
|
||||
y = y.view(torch.uint8)
|
||||
y = y.view(s0, -1)
|
||||
|
||||
return y
|
||||
|
||||
|
||||
def change_4bits_order(x):
|
||||
y = torch.stack([x & 15, x >> 4], dim=-2).view(x.size(0), -1)
|
||||
z = y[:, ::2] | (y[:, 1::2] << 4)
|
||||
return z
|
||||
649
packages_3rdparty/gguf/tensor_mapping.py
vendored
Executable file
649
packages_3rdparty/gguf/tensor_mapping.py
vendored
Executable file
@@ -0,0 +1,649 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Sequence
|
||||
|
||||
from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
|
||||
|
||||
|
||||
class TensorNameMap:
|
||||
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||
# Token embeddings
|
||||
MODEL_TENSOR.TOKEN_EMBD: (
|
||||
"gpt_neox.embed_in", # gptneox
|
||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais
|
||||
"transformer.word_embeddings", # falcon
|
||||
"word_embeddings", # bloom
|
||||
"model.embed_tokens", # llama-hf
|
||||
"tok_embeddings", # llama-pth
|
||||
"embeddings.word_embeddings", # bert nomic-bert
|
||||
"language_model.embedding.word_embeddings", # persimmon
|
||||
"wte", # gpt2
|
||||
"transformer.embd.wte", # phi2
|
||||
"model.tok_embeddings", # internlm2
|
||||
"model.embedding", # mamba-qbert
|
||||
"backbone.embedding", # mamba
|
||||
"backbone.embeddings", # mamba-hf
|
||||
"transformer.in_out_embed", # Grok
|
||||
"embedding.word_embeddings", # chatglm
|
||||
"transformer.token_embeddings", # openelm
|
||||
"shared", # t5
|
||||
),
|
||||
|
||||
# Token type embeddings
|
||||
MODEL_TENSOR.TOKEN_TYPES: (
|
||||
"embeddings.token_type_embeddings", # bert nomic-bert
|
||||
),
|
||||
|
||||
# Normalization of token embeddings
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM: (
|
||||
"word_embeddings_layernorm", # bloom
|
||||
"embeddings.LayerNorm", # bert
|
||||
"emb_ln", # nomic-bert
|
||||
"transformer.norm", # openelm
|
||||
),
|
||||
|
||||
# Position embeddings
|
||||
MODEL_TENSOR.POS_EMBD: (
|
||||
"transformer.wpe", # gpt2
|
||||
"embeddings.position_embeddings", # bert
|
||||
"wpe", # gpt2
|
||||
),
|
||||
|
||||
# Output
|
||||
MODEL_TENSOR.OUTPUT: (
|
||||
"embed_out", # gptneox
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais
|
||||
"output", # llama-pth bloom internlm2
|
||||
"word_embeddings_for_head", # persimmon
|
||||
"lm_head.linear", # phi2
|
||||
"output_layer", # chatglm
|
||||
),
|
||||
|
||||
# Output norm
|
||||
MODEL_TENSOR.OUTPUT_NORM: (
|
||||
"gpt_neox.final_layer_norm", # gptneox
|
||||
"transformer.ln_f", # gpt2 gpt-j falcon jais
|
||||
"model.norm", # llama-hf baichuan internlm2
|
||||
"norm", # llama-pth
|
||||
"transformer.norm_f", # mpt dbrx
|
||||
"ln_f", # refact bloom qwen gpt2
|
||||
"language_model.encoder.final_layernorm", # persimmon
|
||||
"model.final_layernorm", # persimmon
|
||||
"lm_head.ln", # phi2
|
||||
"model.norm_f", # mamba-qbert
|
||||
"backbone.norm_f", # mamba
|
||||
"transformer.rms_norm", # Grok
|
||||
"encoder.final_layernorm", # chatglm
|
||||
"transformer.norm", # openelm
|
||||
),
|
||||
|
||||
# Rope frequencies
|
||||
MODEL_TENSOR.ROPE_FREQS: (
|
||||
"rope.freqs", # llama-pth
|
||||
"rotary_pos_emb.inv_freq", # chatglm
|
||||
),
|
||||
}
|
||||
|
||||
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||
# Attention norm
|
||||
MODEL_TENSOR.ATTN_NORM: (
|
||||
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
||||
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais
|
||||
"transformer.blocks.{bid}.norm_1", # mpt
|
||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||
"h.{bid}.input_layernorm", # bloom
|
||||
"transformer.h.{bid}.ln_mlp", # falcon40b
|
||||
"model.layers.{bid}.input_layernorm", # llama-hf
|
||||
"layers.{bid}.attention_norm", # llama-pth
|
||||
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
||||
"model.layers.{bid}.ln1", # yi
|
||||
"h.{bid}.ln_1", # gpt2
|
||||
"transformer.h.{bid}.ln", # phi2
|
||||
"model.layers.layers.{bid}.norm", # plamo
|
||||
"model.layers.{bid}.attention_norm", # internlm2
|
||||
"model.layers.{bid}.norm", # mamba-qbert
|
||||
"backbone.layers.{bid}.norm", # mamba
|
||||
"transformer.decoder_layer.{bid}.rms_norm", # Grok
|
||||
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
|
||||
"encoder.layers.{bid}.input_layernorm", # chatglm
|
||||
"transformer.layers.{bid}.attn_norm", # openelm
|
||||
),
|
||||
|
||||
# Attention norm 2
|
||||
MODEL_TENSOR.ATTN_NORM_2: (
|
||||
"transformer.h.{bid}.ln_attn", # falcon40b
|
||||
"encoder.layer.{bid}.layer_norm_1", # jina-v2-code
|
||||
),
|
||||
|
||||
# Attention query-key-value
|
||||
MODEL_TENSOR.ATTN_QKV: (
|
||||
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
||||
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
|
||||
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
||||
"transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
|
||||
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
||||
"h.{bid}.self_attention.query_key_value", # bloom
|
||||
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
||||
"model.layers.{bid}.self_attn.query_key_value", # persimmon
|
||||
"h.{bid}.attn.c_attn", # gpt2
|
||||
"transformer.h.{bid}.mixer.Wqkv", # phi2
|
||||
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
|
||||
"model.layers.{bid}.self_attn.qkv_proj", # phi3
|
||||
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
|
||||
"transformer.layers.{bid}.attn.qkv_proj", # openelm
|
||||
),
|
||||
|
||||
# Attention query
|
||||
MODEL_TENSOR.ATTN_Q: (
|
||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
||||
"layers.{bid}.attention.wq", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.query", # bert
|
||||
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
|
||||
"model.layers.{bid}.attention.wq", # internlm2
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
|
||||
),
|
||||
|
||||
# Attention key
|
||||
MODEL_TENSOR.ATTN_K: (
|
||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
||||
"layers.{bid}.attention.wk", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.key", # bert
|
||||
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||
"transformer.h.{bid}.attn.k", # refact
|
||||
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
|
||||
"model.layers.{bid}.attention.wk", # internlm2
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
|
||||
),
|
||||
|
||||
# Attention value
|
||||
MODEL_TENSOR.ATTN_V: (
|
||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
||||
"layers.{bid}.attention.wv", # llama-pth
|
||||
"encoder.layer.{bid}.attention.self.value", # bert
|
||||
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||
"transformer.h.{bid}.attn.v", # refact
|
||||
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
|
||||
"model.layers.{bid}.attention.wv", # internlm2
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
|
||||
),
|
||||
|
||||
# Attention output
|
||||
MODEL_TENSOR.ATTN_OUT: (
|
||||
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
||||
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
|
||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||
"h.{bid}.self_attention.dense", # bloom
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
||||
"layers.{bid}.attention.wo", # llama-pth
|
||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
|
||||
"model.layers.{bid}.self_attn.dense", # persimmon
|
||||
"h.{bid}.attn.c_proj", # gpt2
|
||||
"transformer.h.{bid}.mixer.out_proj", # phi2
|
||||
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
|
||||
"model.layers.{bid}.attention.wo", # internlm2
|
||||
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
|
||||
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
|
||||
"encoder.layers.{bid}.self_attention.dense", # chatglm
|
||||
"transformer.layers.{bid}.attn.out_proj", # openelm
|
||||
),
|
||||
|
||||
# Attention output norm
|
||||
MODEL_TENSOR.ATTN_OUT_NORM: (
|
||||
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
||||
"encoder.layers.{bid}.norm1", # nomic-bert
|
||||
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
|
||||
"transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_POST_NORM: (
|
||||
"model.layers.{bid}.post_attention_layernorm", # gemma2
|
||||
),
|
||||
|
||||
# Rotary embeddings
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD: (
|
||||
"model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
|
||||
"layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
|
||||
"model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
|
||||
"transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
|
||||
),
|
||||
|
||||
# Feed-forward norm
|
||||
MODEL_TENSOR.FFN_NORM: (
|
||||
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
||||
"transformer.h.{bid}.ln_2", # gpt2 refact qwen jais
|
||||
"h.{bid}.post_attention_layernorm", # bloom
|
||||
"transformer.blocks.{bid}.norm_2", # mpt
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
||||
"layers.{bid}.ffn_norm", # llama-pth
|
||||
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
||||
"model.layers.{bid}.ln2", # yi
|
||||
"h.{bid}.ln_2", # gpt2
|
||||
"model.layers.{bid}.ffn_norm", # internlm2
|
||||
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
|
||||
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
|
||||
"transformer.layers.{bid}.ffn_norm", # openelm
|
||||
),
|
||||
|
||||
# Post feed-forward norm
|
||||
MODEL_TENSOR.FFN_PRE_NORM: (
|
||||
"model.layers.{bid}.pre_feedforward_layernorm", # gemma2
|
||||
),
|
||||
|
||||
# Post feed-forward norm
|
||||
MODEL_TENSOR.FFN_POST_NORM: (
|
||||
"model.layers.{bid}.post_feedforward_layernorm", # gemma2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
"model.layers.{bid}.mlp.gate", # qwen2moe
|
||||
"transformer.decoder_layer.{bid}.router", # Grok
|
||||
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
MODEL_TENSOR.FFN_UP: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||
"transformer.h.{bid}.mlp.c_fc", # gpt2 jais
|
||||
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
||||
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
||||
"h.{bid}.mlp.dense_h_to_4h", # bloom
|
||||
"model.layers.{bid}.mlp.up_proj", # llama-hf refact
|
||||
"layers.{bid}.feed_forward.w3", # llama-pth
|
||||
"encoder.layer.{bid}.intermediate.dense", # bert
|
||||
"transformer.h.{bid}.mlp.fc_in", # gpt-j
|
||||
"transformer.h.{bid}.mlp.linear_3", # refact
|
||||
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
|
||||
"model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
|
||||
"transformer.h.{bid}.mlp.w1", # qwen
|
||||
"h.{bid}.mlp.c_fc", # gpt2
|
||||
"transformer.h.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.{bid}.mlp.gate_up_proj", # phi3
|
||||
"model.layers.layers.{bid}.mlp.up_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w3", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
|
||||
"model.layers.{bid}.mlp.c_fc", # starcoder2
|
||||
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
|
||||
"model.layers.{bid}.residual_mlp.w3", # arctic
|
||||
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
|
||||
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
|
||||
),
|
||||
|
||||
# AWQ-activation gate
|
||||
MODEL_TENSOR.FFN_ACT: (
|
||||
"transformer.blocks.{bid}.ffn.act", # mpt
|
||||
),
|
||||
|
||||
# Feed-forward gate
|
||||
MODEL_TENSOR.FFN_GATE: (
|
||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||
"transformer.h.{bid}.mlp.w2", # qwen
|
||||
"transformer.h.{bid}.mlp.c_fc2", # jais
|
||||
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w1", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
|
||||
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
|
||||
"transformer.h.{bid}.mlp.linear_1", # refact
|
||||
"model.layers.{bid}.residual_mlp.w1", # arctic
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
|
||||
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
MODEL_TENSOR.FFN_DOWN: (
|
||||
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
||||
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
|
||||
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
||||
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
||||
"h.{bid}.mlp.dense_4h_to_h", # bloom
|
||||
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
||||
"layers.{bid}.feed_forward.w2", # llama-pth
|
||||
"encoder.layer.{bid}.output.dense", # bert
|
||||
"transformer.h.{bid}.mlp.fc_out", # gpt-j
|
||||
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
||||
"model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
||||
"h.{bid}.mlp.c_proj", # gpt2
|
||||
"transformer.h.{bid}.mlp.fc2", # phi2
|
||||
"model.layers.{bid}.mlp.fc2", # phi2
|
||||
"model.layers.layers.{bid}.mlp.down_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w2", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
|
||||
"model.layers.{bid}.mlp.c_proj", # starcoder2
|
||||
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
|
||||
"transformer.layers.{bid}.ffn.proj_2", # openelm
|
||||
"model.layers.{bid}.residual_mlp.w2", # arctic
|
||||
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
|
||||
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
||||
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP: (
|
||||
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
|
||||
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
|
||||
"model.layers.{bid}.self_attn.q_norm", # cohere
|
||||
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
|
||||
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
|
||||
"transformer.layers.{bid}.attn.q_norm", # openelm
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_K_NORM: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
|
||||
"model.layers.{bid}.self_attn.k_norm", # cohere
|
||||
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
|
||||
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
|
||||
"transformer.layers.{bid}.attn.k_norm", # openelm
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ROPE_FREQS: (
|
||||
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
|
||||
),
|
||||
|
||||
MODEL_TENSOR.LAYER_OUT_NORM: (
|
||||
"encoder.layer.{bid}.output.LayerNorm", # bert
|
||||
"encoder.layers.{bid}.norm2", # nomic-bert
|
||||
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok
|
||||
"encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
|
||||
"encoder.layer.{bid}.layer_norm_2" # jina-v2-code
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_IN: (
|
||||
"model.layers.{bid}.in_proj",
|
||||
"backbone.layers.{bid}.mixer.in_proj",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_CONV1D: (
|
||||
"model.layers.{bid}.conv1d",
|
||||
"backbone.layers.{bid}.mixer.conv1d",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_X: (
|
||||
"model.layers.{bid}.x_proj",
|
||||
"backbone.layers.{bid}.mixer.x_proj",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT: (
|
||||
"model.layers.{bid}.dt_proj",
|
||||
"backbone.layers.{bid}.mixer.dt_proj",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_A: (
|
||||
"model.layers.{bid}.A_log",
|
||||
"backbone.layers.{bid}.mixer.A_log",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_D: (
|
||||
"model.layers.{bid}.D",
|
||||
"backbone.layers.{bid}.mixer.D",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_OUT: (
|
||||
"model.layers.{bid}.out_proj",
|
||||
"backbone.layers.{bid}.mixer.out_proj",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_A: (
|
||||
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_B: (
|
||||
"model.layers.{bid}.self_attn.q_b_proj", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_KV_A_MQA: (
|
||||
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_KV_B: (
|
||||
"model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_A_NORM: (
|
||||
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_KV_A_NORM: (
|
||||
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_SUB_NORM: (
|
||||
"model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_SUB_NORM: (
|
||||
"model.layers.{bid}.mlp.ffn_layernorm", # bitnet
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_NORM: (
|
||||
"decoder.block.{bid}.layer.0.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_Q: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.q", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_K: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.k", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_V: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.v", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_OUT: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.o", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_REL_B: (
|
||||
"decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
|
||||
"decoder.block.{bid}.layer.1.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_K: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_V: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
|
||||
"decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_FFN_NORM: (
|
||||
"decoder.block.{bid}.layer.2.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_FFN_GATE: (
|
||||
"decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_FFN_UP: (
|
||||
"decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
|
||||
"decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_FFN_DOWN: (
|
||||
"decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_OUTPUT_NORM: (
|
||||
"decoder.final_layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_NORM: (
|
||||
"encoder.block.{bid}.layer.0.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_Q: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.q", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_K: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.k", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_V: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.v", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_OUT: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.o", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_ATTN_REL_B: (
|
||||
"encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_FFN_NORM: (
|
||||
"encoder.block.{bid}.layer.1.layer_norm", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_FFN_GATE: (
|
||||
"encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_FFN_UP: (
|
||||
"encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
|
||||
"encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_FFN_DOWN: (
|
||||
"encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ENC_OUTPUT_NORM: (
|
||||
"encoder.final_layer_norm", # t5
|
||||
),
|
||||
}
|
||||
|
||||
# architecture-specific block mappings
|
||||
arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
|
||||
MODEL_ARCH.ARCTIC: {
|
||||
MODEL_TENSOR.FFN_NORM: (
|
||||
"model.layers.{bid}.residual_layernorm",
|
||||
),
|
||||
MODEL_TENSOR.FFN_NORM_EXP: (
|
||||
"model.layers.{bid}.post_attention_layernorm",
|
||||
),
|
||||
},
|
||||
}
|
||||
|
||||
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
||||
|
||||
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
||||
self.mapping = {}
|
||||
for tensor, keys in self.mappings_cfg.items():
|
||||
if tensor not in MODEL_TENSORS[arch]:
|
||||
continue
|
||||
tensor_name = TENSOR_NAMES[tensor]
|
||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||
for key in keys:
|
||||
self.mapping[key] = (tensor, tensor_name)
|
||||
if arch in self.arch_block_mappings_cfg:
|
||||
self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
|
||||
for bid in range(n_blocks):
|
||||
for tensor, keys in self.block_mappings_cfg.items():
|
||||
if tensor not in MODEL_TENSORS[arch]:
|
||||
continue
|
||||
|
||||
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
|
||||
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||
for key in keys:
|
||||
key = key.format(bid = bid)
|
||||
self.mapping[key] = (tensor, tensor_name)
|
||||
|
||||
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
||||
result = self.mapping.get(key)
|
||||
if result is not None:
|
||||
return result
|
||||
for suffix in try_suffixes:
|
||||
if key.endswith(suffix):
|
||||
result = self.mapping.get(key[:-len(suffix)])
|
||||
if result is not None:
|
||||
return result[0], result[1] + suffix
|
||||
return None
|
||||
|
||||
def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
|
||||
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||
if result is None:
|
||||
return None
|
||||
return result[1]
|
||||
|
||||
def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
|
||||
result = self.get_type_and_name(key, try_suffixes = try_suffixes)
|
||||
if result is None:
|
||||
return None
|
||||
return result[0]
|
||||
|
||||
def __getitem__(self, key: str) -> str:
|
||||
try:
|
||||
return self.mapping[key][1]
|
||||
except KeyError:
|
||||
raise KeyError(key)
|
||||
|
||||
def __contains__(self, key: str) -> bool:
|
||||
return key in self.mapping
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return repr(self.mapping)
|
||||
|
||||
|
||||
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
|
||||
return TensorNameMap(arch, n_blocks)
|
||||
69
packages_3rdparty/gguf/utility.py
vendored
Executable file
69
packages_3rdparty/gguf/utility.py
vendored
Executable file
@@ -0,0 +1,69 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Literal
|
||||
|
||||
|
||||
def fill_templated_filename(filename: str, output_type: str | None) -> str:
|
||||
# Given a file name fill in any type templates e.g. 'some-model-name.{ftype}.gguf'
|
||||
ftype_lowercase: str = output_type.lower() if output_type is not None else ""
|
||||
ftype_uppercase: str = output_type.upper() if output_type is not None else ""
|
||||
return filename.format(ftype_lowercase,
|
||||
outtype=ftype_lowercase, ftype=ftype_lowercase,
|
||||
OUTTYPE=ftype_uppercase, FTYPE=ftype_uppercase)
|
||||
|
||||
|
||||
def model_weight_count_rounded_notation(model_params_count: int, min_digits: int = 2) -> str:
|
||||
if model_params_count > 1e12 :
|
||||
# Trillions Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-12
|
||||
scale_suffix = "T"
|
||||
elif model_params_count > 1e9 :
|
||||
# Billions Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-9
|
||||
scale_suffix = "B"
|
||||
elif model_params_count > 1e6 :
|
||||
# Millions Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-6
|
||||
scale_suffix = "M"
|
||||
else:
|
||||
# Thousands Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-3
|
||||
scale_suffix = "K"
|
||||
|
||||
fix = max(min_digits - len(str(round(scaled_model_params)).lstrip('0')), 0)
|
||||
|
||||
return f"{scaled_model_params:.{fix}f}{scale_suffix}"
|
||||
|
||||
|
||||
def size_label(total_params: int, shared_params: int, expert_params: int, expert_count: int) -> str:
|
||||
|
||||
if expert_count > 0:
|
||||
pretty_size = model_weight_count_rounded_notation(abs(shared_params) + abs(expert_params), min_digits=2)
|
||||
size_class = f"{expert_count}x{pretty_size}"
|
||||
else:
|
||||
size_class = model_weight_count_rounded_notation(abs(total_params), min_digits=2)
|
||||
|
||||
return size_class
|
||||
|
||||
|
||||
def naming_convention(model_name: str | None, base_name: str | None, finetune_string: str | None, version_string: str | None, size_label: str | None, output_type: str | None, model_type: Literal['vocab', 'LoRA'] | None = None) -> str:
|
||||
# Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention
|
||||
|
||||
if base_name is not None:
|
||||
name = base_name.strip().replace(' ', '-').replace('/', '-')
|
||||
elif model_name is not None:
|
||||
name = model_name.strip().replace(' ', '-').replace('/', '-')
|
||||
else:
|
||||
name = "ggml-model"
|
||||
|
||||
parameters = f"-{size_label}" if size_label is not None else ""
|
||||
|
||||
finetune = f"-{finetune_string.strip().replace(' ', '-')}" if finetune_string is not None else ""
|
||||
|
||||
version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else ""
|
||||
|
||||
encoding = f"-{output_type.strip().replace(' ', '-').upper()}" if output_type is not None else ""
|
||||
|
||||
kind = f"-{model_type.strip().replace(' ', '-')}" if model_type is not None else ""
|
||||
|
||||
return f"{name}{parameters}{finetune}{version}{encoding}{kind}"
|
||||
465
packages_3rdparty/gguf/vocab.py
vendored
Executable file
465
packages_3rdparty/gguf/vocab.py
vendored
Executable file
@@ -0,0 +1,465 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
import logging
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Sequence, Mapping, Iterable, Protocol, ClassVar, runtime_checkable
|
||||
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
import gguf
|
||||
|
||||
from .gguf_writer import GGUFWriter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SpecialVocab:
|
||||
merges: list[str]
|
||||
add_special_token: dict[str, bool]
|
||||
special_token_ids: dict[str, int]
|
||||
chat_template: str | Sequence[Mapping[str, str]] | None
|
||||
|
||||
def __init__(
|
||||
self, path: str | os.PathLike[str], load_merges: bool = False,
|
||||
special_token_types: Iterable[str] | None = None,
|
||||
n_vocab: int | None = None,
|
||||
):
|
||||
self.special_token_ids = {}
|
||||
self.add_special_token = {}
|
||||
self.n_vocab = n_vocab
|
||||
self.load_merges = load_merges
|
||||
self.merges = []
|
||||
self.chat_template = None
|
||||
if special_token_types is not None:
|
||||
self.special_token_types = special_token_types
|
||||
else:
|
||||
self.special_token_types = ('bos', 'eos', 'unk', 'sep', 'pad', 'cls', 'mask')
|
||||
self._load(Path(path))
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return '<SpecialVocab with {} merges, special tokens {}, add special tokens {}>'.format(
|
||||
len(self.merges), self.special_token_ids or "unset", self.add_special_token or "unset",
|
||||
)
|
||||
|
||||
def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None:
|
||||
if self.merges:
|
||||
if not quiet:
|
||||
logger.info(f'Adding {len(self.merges)} merge(s).')
|
||||
gw.add_token_merges(self.merges)
|
||||
elif self.load_merges:
|
||||
logger.warning('Adding merges requested but no merges found, output may be non-functional.')
|
||||
for typ, tokid in self.special_token_ids.items():
|
||||
id_handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
|
||||
if id_handler is None:
|
||||
logger.warning(f'No handler for special token type {typ} with id {tokid} - skipping')
|
||||
continue
|
||||
if not quiet:
|
||||
logger.info(f'Setting special token type {typ} to {tokid}')
|
||||
id_handler(tokid)
|
||||
for typ, value in self.add_special_token.items():
|
||||
add_handler: Callable[[bool], None] | None = getattr(gw, f'add_add_{typ}_token', None)
|
||||
if add_handler is None:
|
||||
logger.warning(f'No handler for add_{typ}_token with value {value} - skipping')
|
||||
continue
|
||||
if not quiet:
|
||||
logger.info(f'Setting add_{typ}_token to {value}')
|
||||
add_handler(value)
|
||||
if self.chat_template is not None:
|
||||
if not quiet:
|
||||
logger.info(f'Setting chat_template to {self.chat_template}')
|
||||
gw.add_chat_template(self.chat_template)
|
||||
|
||||
def _load(self, path: Path) -> None:
|
||||
self._try_load_from_tokenizer_json(path)
|
||||
self._try_load_from_config_json(path)
|
||||
if self.load_merges and not self.merges:
|
||||
self._try_load_merges_txt(path)
|
||||
|
||||
def _try_load_merges_txt(self, path: Path) -> bool:
|
||||
merges_file = path / 'merges.txt'
|
||||
if not merges_file.is_file():
|
||||
return False
|
||||
with open(merges_file, 'r', encoding = 'utf-8') as fp:
|
||||
first_line = next(fp, '').strip()
|
||||
if not first_line.startswith('#'):
|
||||
fp.seek(0)
|
||||
line_num = 0
|
||||
else:
|
||||
line_num = 1
|
||||
merges = []
|
||||
for line in fp:
|
||||
line_num += 1
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
parts = line.split(None, 3)
|
||||
if len(parts) != 2:
|
||||
logger.warning(f'{merges_file.name}: Line {line_num}: Entry malformed, ignoring')
|
||||
continue
|
||||
merges.append(f'{parts[0]} {parts[1]}')
|
||||
self.merges = merges
|
||||
return True
|
||||
|
||||
def _set_special_token(self, typ: str, tid: Any) -> None:
|
||||
if not isinstance(tid, int):
|
||||
return
|
||||
if tid < 0:
|
||||
raise ValueError(f'invalid value for special token type {typ}: {tid}')
|
||||
if self.n_vocab is None or tid < self.n_vocab:
|
||||
if typ in self.special_token_ids:
|
||||
return
|
||||
self.special_token_ids[typ] = tid
|
||||
return
|
||||
logger.warning(f'Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping')
|
||||
|
||||
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
|
||||
tokenizer_file = path / 'tokenizer.json'
|
||||
if tokenizer_file.is_file():
|
||||
with open(tokenizer_file, encoding = 'utf-8') as f:
|
||||
tokenizer = json.load(f)
|
||||
if self.load_merges:
|
||||
merges = tokenizer.get('model', {}).get('merges')
|
||||
if isinstance(merges, list) and merges and isinstance(merges[0], str):
|
||||
self.merges = merges
|
||||
added_tokens = tokenizer.get('added_tokens', {})
|
||||
else:
|
||||
added_tokens = {}
|
||||
tokenizer_config_file = path / 'tokenizer_config.json'
|
||||
if not tokenizer_config_file.is_file():
|
||||
return True
|
||||
with open(tokenizer_config_file, encoding = 'utf-8') as f:
|
||||
tokenizer_config = json.load(f)
|
||||
chat_template = tokenizer_config.get('chat_template')
|
||||
if chat_template is None or isinstance(chat_template, (str, list)):
|
||||
self.chat_template = chat_template
|
||||
else:
|
||||
logger.warning(f'Bad type for chat_template field in {tokenizer_config_file!r} - ignoring')
|
||||
for typ in self.special_token_types:
|
||||
add_entry = tokenizer_config.get(f'add_{typ}_token')
|
||||
if isinstance(add_entry, bool):
|
||||
self.add_special_token[typ] = add_entry
|
||||
entry = tokenizer_config.get(f'{typ}_token')
|
||||
if isinstance(entry, str):
|
||||
tc_content = entry
|
||||
elif isinstance(entry, dict):
|
||||
entry_content = entry.get('content')
|
||||
if not isinstance(entry_content, str):
|
||||
continue
|
||||
tc_content = entry_content
|
||||
else:
|
||||
continue
|
||||
# We only need the first match here.
|
||||
maybe_token_id = next(
|
||||
(atok.get('id') for atok in added_tokens if atok.get('content') == tc_content),
|
||||
None,
|
||||
)
|
||||
self._set_special_token(typ, maybe_token_id)
|
||||
return True
|
||||
|
||||
def _try_load_from_config_json(self, path: Path) -> bool:
|
||||
config_file = path / 'config.json'
|
||||
if not config_file.is_file():
|
||||
return False
|
||||
with open(config_file, encoding = 'utf-8') as f:
|
||||
config = json.load(f)
|
||||
for typ in self.special_token_types:
|
||||
self._set_special_token(typ, config.get(f'{typ}_token_id'))
|
||||
return True
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class BaseVocab(Protocol):
|
||||
tokenizer_model: ClassVar[str]
|
||||
name: ClassVar[str]
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class Vocab(BaseVocab, Protocol):
|
||||
vocab_size: int
|
||||
added_tokens_dict: dict[str, int]
|
||||
added_tokens_list: list[str]
|
||||
fname_tokenizer: Path
|
||||
|
||||
def __init__(self, base_path: Path): ...
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
|
||||
|
||||
|
||||
class NoVocab(BaseVocab):
|
||||
tokenizer_model = "no_vocab"
|
||||
name = "no_vocab"
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return "<NoVocab for a model without integrated vocabulary>"
|
||||
|
||||
|
||||
class BpeVocab(Vocab):
|
||||
tokenizer_model = "gpt2"
|
||||
name = "bpe"
|
||||
|
||||
def __init__(self, base_path: Path):
|
||||
added_tokens: dict[str, int] = {}
|
||||
|
||||
if (fname_tokenizer := base_path / 'vocab.json').exists():
|
||||
# "slow" tokenizer
|
||||
with open(fname_tokenizer, encoding="utf-8") as f:
|
||||
self.vocab = json.load(f)
|
||||
|
||||
try:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
|
||||
added_tokens = json.load(f)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
else:
|
||||
# "fast" tokenizer
|
||||
fname_tokenizer = base_path / 'tokenizer.json'
|
||||
|
||||
# if this fails, FileNotFoundError propagates to caller
|
||||
with open(fname_tokenizer, encoding="utf-8") as f:
|
||||
tokenizer_json = json.load(f)
|
||||
|
||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
||||
if (
|
||||
tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
|
||||
or tokenizer_json['decoder']['type'] != 'ByteLevel'
|
||||
):
|
||||
raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
|
||||
|
||||
self.vocab = tokenizer_model["vocab"]
|
||||
|
||||
if (added := tokenizer_json.get('added_tokens')) is not None:
|
||||
# Added tokens here can be duplicates of the main vocabulary.
|
||||
added_tokens = {item['content']: item['id']
|
||||
for item in added
|
||||
if item['content'] not in self.vocab}
|
||||
|
||||
vocab_size = len(self.vocab)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if expected_ids != actual_ids:
|
||||
expected_end_id = vocab_size + len(actual_ids) - 1
|
||||
raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
|
||||
f"{vocab_size} - {expected_end_id}; got {actual_ids}")
|
||||
|
||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_list = [text for (text, idx) in items]
|
||||
self.vocab_size_base = vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
|
||||
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
|
||||
|
||||
for i, _ in enumerate(self.vocab):
|
||||
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.bpe_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class SentencePieceVocab(Vocab):
|
||||
tokenizer_model = "llama"
|
||||
name = "spm"
|
||||
|
||||
def __init__(self, base_path: Path):
|
||||
added_tokens: dict[str, int] = {}
|
||||
if (fname_tokenizer := base_path / 'tokenizer.model').exists():
|
||||
# normal location
|
||||
try:
|
||||
with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
|
||||
added_tokens = json.load(f)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
|
||||
# not found in alternate location either
|
||||
raise FileNotFoundError('Cannot find tokenizer.model')
|
||||
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor()
|
||||
self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
|
||||
vocab_size = self.sentencepiece_tokenizer.vocab_size()
|
||||
|
||||
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
|
||||
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
|
||||
actual_new_ids = sorted(new_tokens.keys())
|
||||
|
||||
if expected_new_ids != actual_new_ids:
|
||||
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
|
||||
|
||||
# Token pieces that were added to the base vocabulary.
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
|
||||
self.vocab_size_base = vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
|
||||
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.sentencepiece_tokenizer
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.IdToPiece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score: float = tokenizer.GetScore(i)
|
||||
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
if tokenizer.IsUnknown(i):
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if tokenizer.IsControl(i):
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
|
||||
# NOTE: I think added_tokens are user defined.
|
||||
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
||||
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
|
||||
|
||||
if tokenizer.IsUnused(i):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
if tokenizer.IsByte(i):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
|
||||
yield text, score, toktype
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.sentencepiece_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class LlamaHfVocab(Vocab):
|
||||
tokenizer_model = "llama"
|
||||
name = "hfft"
|
||||
|
||||
def __init__(self, base_path: Path):
|
||||
fname_tokenizer = base_path / 'tokenizer.json'
|
||||
# if this fails, FileNotFoundError propagates to caller
|
||||
with open(fname_tokenizer, encoding='utf-8') as f:
|
||||
tokenizer_json = json.load(f)
|
||||
|
||||
# pre-check so we know if we need transformers
|
||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
||||
is_llama3 = (
|
||||
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
|
||||
and not tokenizer_model.get('byte_fallback', True)
|
||||
)
|
||||
if is_llama3:
|
||||
raise TypeError('Llama 3 must be converted with BpeVocab')
|
||||
|
||||
if not is_llama3 and (
|
||||
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
|
||||
or tokenizer_json['decoder']['type'] != 'Sequence'
|
||||
):
|
||||
raise FileNotFoundError('Cannot find Llama BPE tokenizer')
|
||||
|
||||
try:
|
||||
from transformers import AutoTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"To use LlamaHfVocab, please install the `transformers` package. "
|
||||
"You can install it with `pip install transformers`."
|
||||
) from e
|
||||
|
||||
# Allow the tokenizer to default to slow or fast versions.
|
||||
# Explicitly set tokenizer to use local paths.
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
base_path,
|
||||
cache_dir=base_path,
|
||||
local_files_only=True,
|
||||
)
|
||||
assert self.tokenizer.is_fast # assume tokenizer.json is used
|
||||
|
||||
# Initialize lists and dictionaries for added tokens
|
||||
self.added_tokens_list = []
|
||||
self.added_tokens_dict = dict()
|
||||
self.added_tokens_ids = set()
|
||||
|
||||
# Process added tokens
|
||||
for tok, tokidx in sorted(
|
||||
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
|
||||
):
|
||||
# Only consider added tokens that are not in the base vocabulary
|
||||
if tokidx >= self.tokenizer.vocab_size:
|
||||
self.added_tokens_list.append(tok)
|
||||
self.added_tokens_dict[tok] = tokidx
|
||||
self.added_tokens_ids.add(tokidx)
|
||||
|
||||
# Store special tokens and their IDs
|
||||
self.specials = {
|
||||
tok: self.tokenizer.get_vocab()[tok]
|
||||
for tok in self.tokenizer.all_special_tokens
|
||||
}
|
||||
self.special_ids = set(self.tokenizer.all_special_ids)
|
||||
|
||||
# Set vocabulary sizes
|
||||
self.vocab_size_base = self.tokenizer.vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
|
||||
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
reverse_vocab = {
|
||||
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
|
||||
}
|
||||
|
||||
for token_id in range(self.vocab_size_base):
|
||||
# Skip processing added tokens here
|
||||
if token_id in self.added_tokens_ids:
|
||||
continue
|
||||
|
||||
# Convert token text to bytes
|
||||
token_text = reverse_vocab[token_id].encode("utf-8")
|
||||
|
||||
# Yield token text, score, and type
|
||||
yield token_text, self.get_token_score(token_id), self.get_token_type(
|
||||
token_id, token_text, self.special_ids # Reuse already stored special IDs
|
||||
)
|
||||
|
||||
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
|
||||
# Special case for byte tokens
|
||||
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
|
||||
return gguf.TokenType.BYTE
|
||||
|
||||
# Determine token type based on whether it's a special token
|
||||
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
|
||||
|
||||
def get_token_score(self, token_id: int) -> float:
|
||||
# Placeholder for actual logic to determine the token's score
|
||||
# This needs to be implemented based on specific requirements
|
||||
return -1000.0 # Default score
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
if text in self.specials:
|
||||
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
|
||||
score = self.get_token_score(self.specials[text])
|
||||
else:
|
||||
toktype = gguf.TokenType.USER_DEFINED
|
||||
score = -1000.0
|
||||
|
||||
yield text.encode("utf-8"), score, toktype
|
||||
|
||||
def has_newline_token(self):
|
||||
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.hf_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
688
packages_3rdparty/webui_lora_collection/LICENSE.txt
vendored
Executable file
688
packages_3rdparty/webui_lora_collection/LICENSE.txt
vendored
Executable file
@@ -0,0 +1,688 @@
|
||||
GNU AFFERO GENERAL PUBLIC LICENSE
|
||||
Version 3, 19 November 2007
|
||||
|
||||
Copyright (c) 2023 AUTOMATIC1111
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU Affero General Public License is a free, copyleft license for
|
||||
software and other kinds of works, specifically designed to ensure
|
||||
cooperation with the community in the case of network server software.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
our General Public Licenses are intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
Developers that use our General Public Licenses protect your rights
|
||||
with two steps: (1) assert copyright on the software, and (2) offer
|
||||
you this License which gives you legal permission to copy, distribute
|
||||
and/or modify the software.
|
||||
|
||||
A secondary benefit of defending all users' freedom is that
|
||||
improvements made in alternate versions of the program, if they
|
||||
receive widespread use, become available for other developers to
|
||||
incorporate. Many developers of free software are heartened and
|
||||
encouraged by the resulting cooperation. However, in the case of
|
||||
software used on network servers, this result may fail to come about.
|
||||
The GNU General Public License permits making a modified version and
|
||||
letting the public access it on a server without ever releasing its
|
||||
source code to the public.
|
||||
|
||||
The GNU Affero General Public License is designed specifically to
|
||||
ensure that, in such cases, the modified source code becomes available
|
||||
to the community. It requires the operator of a network server to
|
||||
provide the source code of the modified version running there to the
|
||||
users of that server. Therefore, public use of a modified version, on
|
||||
a publicly accessible server, gives the public access to the source
|
||||
code of the modified version.
|
||||
|
||||
An older license, called the Affero General Public License and
|
||||
published by Affero, was designed to accomplish similar goals. This is
|
||||
a different license, not a version of the Affero GPL, but Affero has
|
||||
released a new version of the Affero GPL which permits relicensing under
|
||||
this license.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU Affero General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Remote Network Interaction; Use with the GNU General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, if you modify the
|
||||
Program, your modified version must prominently offer all users
|
||||
interacting with it remotely through a computer network (if your version
|
||||
supports such interaction) an opportunity to receive the Corresponding
|
||||
Source of your version by providing access to the Corresponding Source
|
||||
from a network server at no charge, through some standard or customary
|
||||
means of facilitating copying of software. This Corresponding Source
|
||||
shall include the Corresponding Source for any work covered by version 3
|
||||
of the GNU General Public License that is incorporated pursuant to the
|
||||
following paragraph.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the work with which it is combined will remain governed by version
|
||||
3 of the GNU General Public License.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU Affero General Public License from time to time. Such new versions
|
||||
will be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU Affero General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU Affero General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU Affero General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If your software can interact with users remotely through a computer
|
||||
network, you should also make sure that it provides a way for users to
|
||||
get its source. For example, if your program is a web application, its
|
||||
interface could display a "Source" link that leads users to an archive
|
||||
of the code. There are many ways you could offer source, and different
|
||||
solutions will be better for different programs; see section 13 for the
|
||||
specific requirements.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU AGPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
|
||||
|
||||
---------------------------------Facebook BNB-------------------------------
|
||||
|
||||
MIT License
|
||||
|
||||
Copyright (c) Facebook, Inc. and its affiliates.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
2
packages_3rdparty/webui_lora_collection/lora.py
vendored
Executable file
2
packages_3rdparty/webui_lora_collection/lora.py
vendored
Executable file
@@ -0,0 +1,2 @@
|
||||
# TODO: Implement API
|
||||
|
||||
68
packages_3rdparty/webui_lora_collection/lyco_helpers.py
vendored
Executable file
68
packages_3rdparty/webui_lora_collection/lyco_helpers.py
vendored
Executable file
@@ -0,0 +1,68 @@
|
||||
import torch
|
||||
|
||||
|
||||
def make_weight_cp(t, wa, wb):
|
||||
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
|
||||
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
|
||||
|
||||
|
||||
def rebuild_conventional(up, down, shape, dyn_dim=None):
|
||||
up = up.reshape(up.size(0), -1)
|
||||
down = down.reshape(down.size(0), -1)
|
||||
if dyn_dim is not None:
|
||||
up = up[:, :dyn_dim]
|
||||
down = down[:dyn_dim, :]
|
||||
return (up @ down).reshape(shape)
|
||||
|
||||
|
||||
def rebuild_cp_decomposition(up, down, mid):
|
||||
up = up.reshape(up.size(0), -1)
|
||||
down = down.reshape(down.size(0), -1)
|
||||
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)
|
||||
|
||||
|
||||
# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
|
||||
def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
|
||||
'''
|
||||
return a tuple of two value of input dimension decomposed by the number closest to factor
|
||||
second value is higher or equal than first value.
|
||||
|
||||
In LoRA with Kroneckor Product, first value is a value for weight scale.
|
||||
secon value is a value for weight.
|
||||
|
||||
Because of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
|
||||
|
||||
examples)
|
||||
factor
|
||||
-1 2 4 8 16 ...
|
||||
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
|
||||
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
|
||||
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
|
||||
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
|
||||
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
|
||||
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
|
||||
'''
|
||||
|
||||
if factor > 0 and (dimension % factor) == 0:
|
||||
m = factor
|
||||
n = dimension // factor
|
||||
if m > n:
|
||||
n, m = m, n
|
||||
return m, n
|
||||
if factor < 0:
|
||||
factor = dimension
|
||||
m, n = 1, dimension
|
||||
length = m + n
|
||||
while m<n:
|
||||
new_m = m + 1
|
||||
while dimension%new_m != 0:
|
||||
new_m += 1
|
||||
new_n = dimension // new_m
|
||||
if new_m + new_n > length or new_m>factor:
|
||||
break
|
||||
else:
|
||||
m, n = new_m, new_n
|
||||
if m > n:
|
||||
n, m = m, n
|
||||
return m, n
|
||||
|
||||
228
packages_3rdparty/webui_lora_collection/network.py
vendored
Executable file
228
packages_3rdparty/webui_lora_collection/network.py
vendored
Executable file
@@ -0,0 +1,228 @@
|
||||
from __future__ import annotations
|
||||
import os
|
||||
from collections import namedtuple
|
||||
import enum
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modules import sd_models, cache, errors, hashes, shared
|
||||
import modules.models.sd3.mmdit
|
||||
|
||||
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])
|
||||
|
||||
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
|
||||
|
||||
|
||||
class SdVersion(enum.Enum):
|
||||
Unknown = 1
|
||||
SD1 = 2
|
||||
SD2 = 3
|
||||
SDXL = 4
|
||||
|
||||
|
||||
class NetworkOnDisk:
|
||||
def __init__(self, name, filename):
|
||||
self.name = name
|
||||
self.filename = filename
|
||||
self.metadata = {}
|
||||
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
|
||||
|
||||
def read_metadata():
|
||||
metadata = sd_models.read_metadata_from_safetensors(filename)
|
||||
|
||||
return metadata
|
||||
|
||||
if self.is_safetensors:
|
||||
try:
|
||||
self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata)
|
||||
except Exception as e:
|
||||
errors.display(e, f"reading lora {filename}")
|
||||
|
||||
if self.metadata:
|
||||
m = {}
|
||||
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
|
||||
m[k] = v
|
||||
|
||||
self.metadata = m
|
||||
|
||||
self.alias = self.metadata.get('ss_output_name', self.name)
|
||||
|
||||
self.hash = None
|
||||
self.shorthash = None
|
||||
self.set_hash(
|
||||
self.metadata.get('sshs_model_hash') or
|
||||
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
|
||||
''
|
||||
)
|
||||
|
||||
self.sd_version = self.detect_version()
|
||||
|
||||
def detect_version(self):
|
||||
if str(self.metadata.get('ss_base_model_version', "")).startswith("sdxl_"):
|
||||
return SdVersion.SDXL
|
||||
elif str(self.metadata.get('ss_v2', "")) == "True":
|
||||
return SdVersion.SD2
|
||||
elif len(self.metadata):
|
||||
return SdVersion.SD1
|
||||
|
||||
return SdVersion.Unknown
|
||||
|
||||
def set_hash(self, v):
|
||||
self.hash = v
|
||||
self.shorthash = self.hash[0:12]
|
||||
|
||||
if self.shorthash:
|
||||
import networks
|
||||
networks.available_network_hash_lookup[self.shorthash] = self
|
||||
|
||||
def read_hash(self):
|
||||
if not self.hash:
|
||||
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')
|
||||
|
||||
def get_alias(self):
|
||||
import networks
|
||||
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases:
|
||||
return self.name
|
||||
else:
|
||||
return self.alias
|
||||
|
||||
|
||||
class Network: # LoraModule
|
||||
def __init__(self, name, network_on_disk: NetworkOnDisk):
|
||||
self.name = name
|
||||
self.network_on_disk = network_on_disk
|
||||
self.te_multiplier = 1.0
|
||||
self.unet_multiplier = 1.0
|
||||
self.dyn_dim = None
|
||||
self.modules = {}
|
||||
self.bundle_embeddings = {}
|
||||
self.mtime = None
|
||||
|
||||
self.mentioned_name = None
|
||||
"""the text that was used to add the network to prompt - can be either name or an alias"""
|
||||
|
||||
|
||||
class ModuleType:
|
||||
def create_module(self, net: Network, weights: NetworkWeights) -> Network | None:
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModule:
|
||||
def __init__(self, net: Network, weights: NetworkWeights):
|
||||
self.network = net
|
||||
self.network_key = weights.network_key
|
||||
self.sd_key = weights.sd_key
|
||||
self.sd_module = weights.sd_module
|
||||
|
||||
if isinstance(self.sd_module, modules.models.sd3.mmdit.QkvLinear):
|
||||
s = self.sd_module.weight.shape
|
||||
self.shape = (s[0] // 3, s[1])
|
||||
elif hasattr(self.sd_module, 'weight'):
|
||||
self.shape = self.sd_module.weight.shape
|
||||
elif isinstance(self.sd_module, nn.MultiheadAttention):
|
||||
# For now, only self-attn use Pytorch's MHA
|
||||
# So assume all qkvo proj have same shape
|
||||
self.shape = self.sd_module.out_proj.weight.shape
|
||||
else:
|
||||
self.shape = None
|
||||
|
||||
self.ops = None
|
||||
self.extra_kwargs = {}
|
||||
if isinstance(self.sd_module, nn.Conv2d):
|
||||
self.ops = F.conv2d
|
||||
self.extra_kwargs = {
|
||||
'stride': self.sd_module.stride,
|
||||
'padding': self.sd_module.padding
|
||||
}
|
||||
elif isinstance(self.sd_module, nn.Linear):
|
||||
self.ops = F.linear
|
||||
elif isinstance(self.sd_module, nn.LayerNorm):
|
||||
self.ops = F.layer_norm
|
||||
self.extra_kwargs = {
|
||||
'normalized_shape': self.sd_module.normalized_shape,
|
||||
'eps': self.sd_module.eps
|
||||
}
|
||||
elif isinstance(self.sd_module, nn.GroupNorm):
|
||||
self.ops = F.group_norm
|
||||
self.extra_kwargs = {
|
||||
'num_groups': self.sd_module.num_groups,
|
||||
'eps': self.sd_module.eps
|
||||
}
|
||||
|
||||
self.dim = None
|
||||
self.bias = weights.w.get("bias")
|
||||
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
|
||||
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
|
||||
|
||||
self.dora_scale = weights.w.get("dora_scale", None)
|
||||
self.dora_norm_dims = len(self.shape) - 1
|
||||
|
||||
def multiplier(self):
|
||||
if 'transformer' in self.sd_key[:20]:
|
||||
return self.network.te_multiplier
|
||||
else:
|
||||
return self.network.unet_multiplier
|
||||
|
||||
def calc_scale(self):
|
||||
if self.scale is not None:
|
||||
return self.scale
|
||||
if self.dim is not None and self.alpha is not None:
|
||||
return self.alpha / self.dim
|
||||
|
||||
return 1.0
|
||||
|
||||
def apply_weight_decompose(self, updown, orig_weight):
|
||||
# Match the device/dtype
|
||||
orig_weight = orig_weight.to(updown.dtype)
|
||||
dora_scale = self.dora_scale.to(device=orig_weight.device, dtype=updown.dtype)
|
||||
updown = updown.to(orig_weight.device)
|
||||
|
||||
merged_scale1 = updown + orig_weight
|
||||
merged_scale1_norm = (
|
||||
merged_scale1.transpose(0, 1)
|
||||
.reshape(merged_scale1.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(merged_scale1.shape[1], *[1] * self.dora_norm_dims)
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
dora_merged = (
|
||||
merged_scale1 * (dora_scale / merged_scale1_norm)
|
||||
)
|
||||
final_updown = dora_merged - orig_weight
|
||||
return final_updown
|
||||
|
||||
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
|
||||
if self.bias is not None:
|
||||
updown = updown.reshape(self.bias.shape)
|
||||
updown += self.bias.to(orig_weight.device, dtype=updown.dtype)
|
||||
updown = updown.reshape(output_shape)
|
||||
|
||||
if len(output_shape) == 4:
|
||||
updown = updown.reshape(output_shape)
|
||||
|
||||
if orig_weight.size().numel() == updown.size().numel():
|
||||
updown = updown.reshape(orig_weight.shape)
|
||||
|
||||
if ex_bias is not None:
|
||||
ex_bias = ex_bias * self.multiplier()
|
||||
|
||||
updown = updown * self.calc_scale()
|
||||
|
||||
if self.dora_scale is not None:
|
||||
updown = self.apply_weight_decompose(updown, orig_weight)
|
||||
|
||||
return updown * self.multiplier(), ex_bias
|
||||
|
||||
def calc_updown(self, target):
|
||||
raise NotImplementedError()
|
||||
|
||||
def forward(self, x, y):
|
||||
"""A general forward implementation for all modules"""
|
||||
if self.ops is None:
|
||||
raise NotImplementedError()
|
||||
else:
|
||||
updown, ex_bias = self.calc_updown(self.sd_module.weight)
|
||||
return y + self.ops(x, weight=updown, bias=ex_bias, **self.extra_kwargs)
|
||||
|
||||
27
packages_3rdparty/webui_lora_collection/network_full.py
vendored
Executable file
27
packages_3rdparty/webui_lora_collection/network_full.py
vendored
Executable file
@@ -0,0 +1,27 @@
|
||||
import network
|
||||
|
||||
|
||||
class ModuleTypeFull(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["diff"]):
|
||||
return NetworkModuleFull(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModuleFull(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.weight = weights.w.get("diff")
|
||||
self.ex_bias = weights.w.get("diff_b")
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
output_shape = self.weight.shape
|
||||
updown = self.weight.to(orig_weight.device)
|
||||
if self.ex_bias is not None:
|
||||
ex_bias = self.ex_bias.to(orig_weight.device)
|
||||
else:
|
||||
ex_bias = None
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape, ex_bias)
|
||||
33
packages_3rdparty/webui_lora_collection/network_glora.py
vendored
Executable file
33
packages_3rdparty/webui_lora_collection/network_glora.py
vendored
Executable file
@@ -0,0 +1,33 @@
|
||||
|
||||
import network
|
||||
|
||||
class ModuleTypeGLora(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["a1.weight", "a2.weight", "alpha", "b1.weight", "b2.weight"]):
|
||||
return NetworkModuleGLora(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
# adapted from https://github.com/KohakuBlueleaf/LyCORIS
|
||||
class NetworkModuleGLora(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
if hasattr(self.sd_module, 'weight'):
|
||||
self.shape = self.sd_module.weight.shape
|
||||
|
||||
self.w1a = weights.w["a1.weight"]
|
||||
self.w1b = weights.w["b1.weight"]
|
||||
self.w2a = weights.w["a2.weight"]
|
||||
self.w2b = weights.w["b2.weight"]
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
w1a = self.w1a.to(orig_weight.device)
|
||||
w1b = self.w1b.to(orig_weight.device)
|
||||
w2a = self.w2a.to(orig_weight.device)
|
||||
w2b = self.w2b.to(orig_weight.device)
|
||||
|
||||
output_shape = [w1a.size(0), w1b.size(1)]
|
||||
updown = ((w2b @ w1b) + ((orig_weight.to(dtype = w1a.dtype) @ w2a) @ w1a))
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
55
packages_3rdparty/webui_lora_collection/network_hada.py
vendored
Executable file
55
packages_3rdparty/webui_lora_collection/network_hada.py
vendored
Executable file
@@ -0,0 +1,55 @@
|
||||
import lyco_helpers
|
||||
import network
|
||||
|
||||
|
||||
class ModuleTypeHada(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b"]):
|
||||
return NetworkModuleHada(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModuleHada(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
if hasattr(self.sd_module, 'weight'):
|
||||
self.shape = self.sd_module.weight.shape
|
||||
|
||||
self.w1a = weights.w["hada_w1_a"]
|
||||
self.w1b = weights.w["hada_w1_b"]
|
||||
self.dim = self.w1b.shape[0]
|
||||
self.w2a = weights.w["hada_w2_a"]
|
||||
self.w2b = weights.w["hada_w2_b"]
|
||||
|
||||
self.t1 = weights.w.get("hada_t1")
|
||||
self.t2 = weights.w.get("hada_t2")
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
w1a = self.w1a.to(orig_weight.device)
|
||||
w1b = self.w1b.to(orig_weight.device)
|
||||
w2a = self.w2a.to(orig_weight.device)
|
||||
w2b = self.w2b.to(orig_weight.device)
|
||||
|
||||
output_shape = [w1a.size(0), w1b.size(1)]
|
||||
|
||||
if self.t1 is not None:
|
||||
output_shape = [w1a.size(1), w1b.size(1)]
|
||||
t1 = self.t1.to(orig_weight.device)
|
||||
updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b)
|
||||
output_shape += t1.shape[2:]
|
||||
else:
|
||||
if len(w1b.shape) == 4:
|
||||
output_shape += w1b.shape[2:]
|
||||
updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape)
|
||||
|
||||
if self.t2 is not None:
|
||||
t2 = self.t2.to(orig_weight.device)
|
||||
updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
|
||||
else:
|
||||
updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape)
|
||||
|
||||
updown = updown1 * updown2
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
30
packages_3rdparty/webui_lora_collection/network_ia3.py
vendored
Executable file
30
packages_3rdparty/webui_lora_collection/network_ia3.py
vendored
Executable file
@@ -0,0 +1,30 @@
|
||||
import network
|
||||
|
||||
|
||||
class ModuleTypeIa3(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["weight"]):
|
||||
return NetworkModuleIa3(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModuleIa3(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.w = weights.w["weight"]
|
||||
self.on_input = weights.w["on_input"].item()
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
w = self.w.to(orig_weight.device)
|
||||
|
||||
output_shape = [w.size(0), orig_weight.size(1)]
|
||||
if self.on_input:
|
||||
output_shape.reverse()
|
||||
else:
|
||||
w = w.reshape(-1, 1)
|
||||
|
||||
updown = orig_weight * w
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
64
packages_3rdparty/webui_lora_collection/network_lokr.py
vendored
Executable file
64
packages_3rdparty/webui_lora_collection/network_lokr.py
vendored
Executable file
@@ -0,0 +1,64 @@
|
||||
import torch
|
||||
|
||||
import lyco_helpers
|
||||
import network
|
||||
|
||||
|
||||
class ModuleTypeLokr(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
has_1 = "lokr_w1" in weights.w or ("lokr_w1_a" in weights.w and "lokr_w1_b" in weights.w)
|
||||
has_2 = "lokr_w2" in weights.w or ("lokr_w2_a" in weights.w and "lokr_w2_b" in weights.w)
|
||||
if has_1 and has_2:
|
||||
return NetworkModuleLokr(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def make_kron(orig_shape, w1, w2):
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
w2 = w2.contiguous()
|
||||
return torch.kron(w1, w2).reshape(orig_shape)
|
||||
|
||||
|
||||
class NetworkModuleLokr(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.w1 = weights.w.get("lokr_w1")
|
||||
self.w1a = weights.w.get("lokr_w1_a")
|
||||
self.w1b = weights.w.get("lokr_w1_b")
|
||||
self.dim = self.w1b.shape[0] if self.w1b is not None else self.dim
|
||||
self.w2 = weights.w.get("lokr_w2")
|
||||
self.w2a = weights.w.get("lokr_w2_a")
|
||||
self.w2b = weights.w.get("lokr_w2_b")
|
||||
self.dim = self.w2b.shape[0] if self.w2b is not None else self.dim
|
||||
self.t2 = weights.w.get("lokr_t2")
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
if self.w1 is not None:
|
||||
w1 = self.w1.to(orig_weight.device)
|
||||
else:
|
||||
w1a = self.w1a.to(orig_weight.device)
|
||||
w1b = self.w1b.to(orig_weight.device)
|
||||
w1 = w1a @ w1b
|
||||
|
||||
if self.w2 is not None:
|
||||
w2 = self.w2.to(orig_weight.device)
|
||||
elif self.t2 is None:
|
||||
w2a = self.w2a.to(orig_weight.device)
|
||||
w2b = self.w2b.to(orig_weight.device)
|
||||
w2 = w2a @ w2b
|
||||
else:
|
||||
t2 = self.t2.to(orig_weight.device)
|
||||
w2a = self.w2a.to(orig_weight.device)
|
||||
w2b = self.w2b.to(orig_weight.device)
|
||||
w2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
|
||||
|
||||
output_shape = [w1.size(0) * w2.size(0), w1.size(1) * w2.size(1)]
|
||||
if len(orig_weight.shape) == 4:
|
||||
output_shape = orig_weight.shape
|
||||
|
||||
updown = make_kron(output_shape, w1, w2)
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
94
packages_3rdparty/webui_lora_collection/network_lora.py
vendored
Executable file
94
packages_3rdparty/webui_lora_collection/network_lora.py
vendored
Executable file
@@ -0,0 +1,94 @@
|
||||
import torch
|
||||
|
||||
import lyco_helpers
|
||||
import modules.models.sd3.mmdit
|
||||
import network
|
||||
from modules import devices
|
||||
|
||||
|
||||
class ModuleTypeLora(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
|
||||
return NetworkModuleLora(net, weights)
|
||||
|
||||
if all(x in weights.w for x in ["lora_A.weight", "lora_B.weight"]):
|
||||
w = weights.w.copy()
|
||||
weights.w.clear()
|
||||
weights.w.update({"lora_up.weight": w["lora_B.weight"], "lora_down.weight": w["lora_A.weight"]})
|
||||
|
||||
return NetworkModuleLora(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModuleLora(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.up_model = self.create_module(weights.w, "lora_up.weight")
|
||||
self.down_model = self.create_module(weights.w, "lora_down.weight")
|
||||
self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True)
|
||||
|
||||
self.dim = weights.w["lora_down.weight"].shape[0]
|
||||
|
||||
def create_module(self, weights, key, none_ok=False):
|
||||
weight = weights.get(key)
|
||||
|
||||
if weight is None and none_ok:
|
||||
return None
|
||||
|
||||
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention, modules.models.sd3.mmdit.QkvLinear]
|
||||
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
||||
|
||||
if is_linear:
|
||||
weight = weight.reshape(weight.shape[0], -1)
|
||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
elif is_conv and key == "lora_down.weight" or key == "dyn_up":
|
||||
if len(weight.shape) == 2:
|
||||
weight = weight.reshape(weight.shape[0], -1, 1, 1)
|
||||
|
||||
if weight.shape[2] != 1 or weight.shape[3] != 1:
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
||||
else:
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
||||
elif is_conv and key == "lora_mid.weight":
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
||||
elif is_conv and key == "lora_up.weight" or key == "dyn_down":
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
||||
else:
|
||||
raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
|
||||
|
||||
with torch.no_grad():
|
||||
if weight.shape != module.weight.shape:
|
||||
weight = weight.reshape(module.weight.shape)
|
||||
module.weight.copy_(weight)
|
||||
|
||||
module.to(device=devices.cpu, dtype=devices.dtype)
|
||||
module.weight.requires_grad_(False)
|
||||
|
||||
return module
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
up = self.up_model.weight.to(orig_weight.device)
|
||||
down = self.down_model.weight.to(orig_weight.device)
|
||||
|
||||
output_shape = [up.size(0), down.size(1)]
|
||||
if self.mid_model is not None:
|
||||
# cp-decomposition
|
||||
mid = self.mid_model.weight.to(orig_weight.device)
|
||||
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid)
|
||||
output_shape += mid.shape[2:]
|
||||
else:
|
||||
if len(down.shape) == 4:
|
||||
output_shape += down.shape[2:]
|
||||
updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim)
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
|
||||
def forward(self, x, y):
|
||||
self.up_model.to(device=devices.device)
|
||||
self.down_model.to(device=devices.device)
|
||||
|
||||
return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()
|
||||
|
||||
|
||||
28
packages_3rdparty/webui_lora_collection/network_norm.py
vendored
Executable file
28
packages_3rdparty/webui_lora_collection/network_norm.py
vendored
Executable file
@@ -0,0 +1,28 @@
|
||||
import network
|
||||
|
||||
|
||||
class ModuleTypeNorm(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["w_norm", "b_norm"]):
|
||||
return NetworkModuleNorm(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModuleNorm(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.w_norm = weights.w.get("w_norm")
|
||||
self.b_norm = weights.w.get("b_norm")
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
output_shape = self.w_norm.shape
|
||||
updown = self.w_norm.to(orig_weight.device)
|
||||
|
||||
if self.b_norm is not None:
|
||||
ex_bias = self.b_norm.to(orig_weight.device)
|
||||
else:
|
||||
ex_bias = None
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape, ex_bias)
|
||||
119
packages_3rdparty/webui_lora_collection/network_oft.py
vendored
Executable file
119
packages_3rdparty/webui_lora_collection/network_oft.py
vendored
Executable file
@@ -0,0 +1,119 @@
|
||||
import torch
|
||||
import network
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
class ModuleTypeOFT(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
|
||||
return NetworkModuleOFT(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
# TODO: Convert to forge patcher
|
||||
# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
|
||||
# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
|
||||
class NetworkModuleOFT(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.lin_module = None
|
||||
self.org_module: list[torch.Module] = [self.sd_module]
|
||||
|
||||
self.scale = 1.0
|
||||
self.is_R = False
|
||||
self.is_boft = False
|
||||
|
||||
# kohya-ss/New LyCORIS OFT/BOFT
|
||||
if "oft_blocks" in weights.w.keys():
|
||||
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
|
||||
self.alpha = weights.w.get("alpha", None) # alpha is constraint
|
||||
self.dim = self.oft_blocks.shape[0] # lora dim
|
||||
# Old LyCORIS OFT
|
||||
elif "oft_diag" in weights.w.keys():
|
||||
self.is_R = True
|
||||
self.oft_blocks = weights.w["oft_diag"]
|
||||
# self.alpha is unused
|
||||
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
|
||||
|
||||
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
|
||||
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
||||
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
|
||||
|
||||
if is_linear:
|
||||
self.out_dim = self.sd_module.out_features
|
||||
elif is_conv:
|
||||
self.out_dim = self.sd_module.out_channels
|
||||
elif is_other_linear:
|
||||
self.out_dim = self.sd_module.embed_dim
|
||||
|
||||
# LyCORIS BOFT
|
||||
if self.oft_blocks.dim() == 4:
|
||||
self.is_boft = True
|
||||
self.rescale = weights.w.get('rescale', None)
|
||||
if self.rescale is not None and not is_other_linear:
|
||||
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))
|
||||
|
||||
self.num_blocks = self.dim
|
||||
self.block_size = self.out_dim // self.dim
|
||||
self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim
|
||||
if self.is_R:
|
||||
self.constraint = None
|
||||
self.block_size = self.dim
|
||||
self.num_blocks = self.out_dim // self.dim
|
||||
elif self.is_boft:
|
||||
self.boft_m = self.oft_blocks.shape[0]
|
||||
self.num_blocks = self.oft_blocks.shape[1]
|
||||
self.block_size = self.oft_blocks.shape[2]
|
||||
self.boft_b = self.block_size
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
oft_blocks = self.oft_blocks.to(orig_weight.device)
|
||||
eye = torch.eye(self.block_size, device=oft_blocks.device)
|
||||
|
||||
if not self.is_R:
|
||||
block_Q = oft_blocks - oft_blocks.transpose(-1, -2) # ensure skew-symmetric orthogonal matrix
|
||||
if self.constraint != 0:
|
||||
norm_Q = torch.norm(block_Q.flatten())
|
||||
new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
|
||||
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
|
||||
|
||||
R = oft_blocks.to(orig_weight.device)
|
||||
|
||||
if not self.is_boft:
|
||||
# This errors out for MultiheadAttention, might need to be handled up-stream
|
||||
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
||||
merged_weight = torch.einsum(
|
||||
'k n m, k n ... -> k m ...',
|
||||
R,
|
||||
merged_weight
|
||||
)
|
||||
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
|
||||
else:
|
||||
# TODO: determine correct value for scale
|
||||
scale = 1.0
|
||||
m = self.boft_m
|
||||
b = self.boft_b
|
||||
r_b = b // 2
|
||||
inp = orig_weight
|
||||
for i in range(m):
|
||||
bi = R[i] # b_num, b_size, b_size
|
||||
if i == 0:
|
||||
# Apply multiplier/scale and rescale into first weight
|
||||
bi = bi * scale + (1 - scale) * eye
|
||||
inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b)
|
||||
inp = rearrange(inp, "(d b) ... -> d b ...", b=b)
|
||||
inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)
|
||||
inp = rearrange(inp, "d b ... -> (d b) ...")
|
||||
inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b)
|
||||
merged_weight = inp
|
||||
|
||||
# Rescale mechanism
|
||||
if self.rescale is not None:
|
||||
merged_weight = self.rescale.to(merged_weight) * merged_weight
|
||||
|
||||
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
|
||||
output_shape = orig_weight.shape
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
Reference in New Issue
Block a user