Talkinghead performance improvements and refactoring (#207)

* talkinghead: fix and improve THA3 manual poser

* server.py: no, don't yet use fp16 for talkinghead

* talkinghead: remove wxPython dependency from live mode

* comment out unused functions

* add TODO list

* coding style

* remove unused import

* add TODO marker

* message wordings

* fix typos in variable names

* talkinghead updates

* talkinghead updates

* Empty commit

* presentation order, sectioning

* fix the inMotion flag update

* mark a TODO

* refactor

* remove done TODO items

* mark a TODO

* comment wording

* pause animation while loading a new image

* parser doesn't belong here, not a command-line app anymore

* message wording

* use finally

* remove superfluous "global" declarations

* lots of cleanup

* remove silly sys.path entry

* improve docstring

* oops

* app.py now only serves the live mode for the plugin

* talkinghead live mode: remove ifacialmocap stuff (unused)

* improve comment

* list walking is so 1990s

* use double quotes consistently

* remove now-unused ifacialmocap-related files from the repo

* remove done TODO item

* improve docstring

* update comment

* remove now-unused function

* update comment

* improve docstring

* add TODO marker

* oops, typo

* add --talkinghead-model command-line option to server.py

Default is 'auto': float16 on GPU, float32 on CPU.

* talkinghead: auto-install THA3 models if needed

* remove tha3/models from git repo (have autodownload now)

* Add hf-hub as explicit dependency

* Add THA models to gitignore

---------

Co-authored-by: Cohee <18619528+Cohee1207@users.noreply.github.com>
This commit is contained in:
Juha Jeronen
2023-12-21 23:48:25 +02:00
committed by GitHub
parent 47a5489142
commit 4c6f843ff9
22 changed files with 525 additions and 2363 deletions

1
.gitignore vendored
View File

@@ -139,3 +139,4 @@ model.pt
api_key.txt
.vscode
stt_test.wav
talkinghead/tha3/models

View File

@@ -24,3 +24,4 @@ vosk
sounddevice
openai-whisper
selenium
huggingface-hub

View File

@@ -23,3 +23,4 @@ vosk
sounddevice
openai-whisper
selenium
huggingface-hub

View File

@@ -23,6 +23,6 @@ vosk
sounddevice
openai-whisper
selenium
huggingface-hub
fastapi
wxpython; sys_platform == 'win32' or sys_platform == 'darwin'

View File

@@ -86,6 +86,15 @@ parser.add_argument(
"--secure", action="store_true", help="Enforces the use of an API key"
)
parser.add_argument("--talkinghead-gpu", action="store_true", help="Run the talkinghead animation on the GPU (CPU is default)")
parser.add_argument(
"--talkinghead-model", type=str, help="The THA3 model to use. 'float' models are fp32, 'half' are fp16. 'auto' (default) picks fp16 for GPU and fp32 for CPU.",
required=False, default="auto",
choices=["auto", "standard_float", "separable_float", "standard_half", "separable_half"],
)
parser.add_argument(
"--talkinghead-models", type=str, help="If THA3 models are not yet installed, use the given HuggingFace repository to install them.",
default="OktayAlpk/talking-head-anime-3"
)
parser.add_argument("--coqui-gpu", action="store_true", help="Run the voice models on the GPU (CPU is default)")
parser.add_argument("--coqui-models", help="Install given Coqui-api TTS model at launch (comma separated list, last one will be loaded at start)")
@@ -180,21 +189,41 @@ if not torch.cuda.is_available() and not args.cpu:
print(f"{Fore.GREEN}{Style.BRIGHT}Using torch device: {device_string}{Style.RESET_ALL}")
if "talkinghead" in modules:
# Install the THA3 models if needed
talkinghead_models_dir = os.path.join(os.getcwd(), "talkinghead", "tha3", "models")
if not os.path.exists(talkinghead_models_dir):
# API:
# https://huggingface.co/docs/huggingface_hub/en/guides/download
try:
from huggingface_hub import snapshot_download
except ImportError:
raise ImportError(
"You need to install huggingface_hub to install talkinghead models automatically. "
"See https://pypi.org/project/huggingface-hub/ for installation."
)
os.makedirs(talkinghead_models_dir, exist_ok=True)
print(f"THA3 models not yet installed. Installing from {args.talkinghead_models} into talkinghead/tha3/models.")
# TODO: I'd prefer to install with symlinks, but how about Windows users?
snapshot_download(repo_id=args.talkinghead_models, local_dir=talkinghead_models_dir, local_dir_use_symlinks=False)
import sys
import threading
mode = "cuda" if args.talkinghead_gpu else "cpu"
print("Initializing talkinghead pipeline in " + mode + " mode....")
model = args.talkinghead_model
if model == "auto": # default
# FP16 boosts the rendering performance by ~1.5x, but is only supported on GPU.
model = "separable_half" if args.talkinghead_gpu else "separable_float"
print(f"Initializing talkinghead pipeline in {mode} mode with model {model}....")
talkinghead_path = os.path.abspath(os.path.join(os.getcwd(), "talkinghead"))
sys.path.append(talkinghead_path) # Add the path to the 'tha3' module to the sys.path list
try:
import talkinghead.tha3.app.app as talkinghead
from talkinghead import *
def launch_talkinghead_gui():
talkinghead.launch_gui(mode, "separable_float")
#choices=['standard_float', 'separable_float', 'standard_half', 'separable_half'],
#choices='The device to use for PyTorch ("cuda" for GPU, "cpu" for CPU).'
talkinghead_thread = threading.Thread(target=launch_talkinghead_gui)
def launch_talkinghead():
# mode: choices='The device to use for PyTorch ("cuda" for GPU, "cpu" for CPU).'
# model: choices=['standard_float', 'separable_float', 'standard_half', 'separable_half'],
talkinghead.launch(mode, model)
talkinghead_thread = threading.Thread(target=launch_talkinghead)
talkinghead_thread.daemon = True # Set the thread as a daemon thread
talkinghead_thread.start()

View File

@@ -1,20 +0,0 @@
#!/bin/bash
#
# Launch THA3 in standalone app mode.
#
# This standalone app mode does not interact with SillyTavern.
#
# The usual way to run this fork of THA3 is as a SillyTavern-extras plugin.
# The standalone app mode comes from the original THA3 code, and is included
# for testing and debugging.
#
# If you want to manually pose a character (to generate static expression images),
# use `start_manual_poser.sh` instead.
#
# This must run in the "extras" conda venv!
# Do this first:
# conda activate extras
#
# The `--char=...` flag can be used to specify which image to load under "tha3/images".
#
python -m tha3.app.app --char=example.png $@

File diff suppressed because it is too large Load Diff

View File

@@ -59,7 +59,7 @@ import os
import pathlib
import sys
import time
from typing import Dict, List, Tuple
from typing import List
import PIL.Image
@@ -71,8 +71,8 @@ import wx
from tha3.poser.modes.load_poser import load_poser
from tha3.poser.poser import Poser, PoseParameterCategory, PoseParameterGroup
from tha3.util import rgba_to_numpy_image, grid_change_to_numpy_image, \
rgb_to_numpy_image, resize_PIL_image, extract_PIL_image_from_filelike, extract_pytorch_image_from_PIL_image
from tha3.util import resize_PIL_image, extract_PIL_image_from_filelike, extract_pytorch_image_from_PIL_image
from tha3.app.util import load_emotion_presets, posedict_to_pose, pose_to_posedict, torch_image_to_numpy, FpsStatistics
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@@ -95,97 +95,6 @@ logger = logging.getLogger(__name__)
# input_exts_and_descs_str = "|".join(format_fileformat_list(PIL_supported_input_formats)) # filter-spec accepted by `wx.FileDialog`
# output_exts_and_descs_str = "|".join(format_fileformat_list(PIL_supported_output_formats))
# The keys for a pose in the emotion JSON files.
#
# TODO: "eye_unimpressed" is arity-2, but has only one entry in the JSON. The current implementation smashes both into one,
# letting the second one (right slider) win. Maybe the two values should be saved separately, but we have to avoid
# breaking the live mode served by `app.py`.
posedict_keys = ["eyebrow_troubled_left_index", "eyebrow_troubled_right_index",
"eyebrow_angry_left_index", "eyebrow_angry_right_index",
"eyebrow_lowered_left_index", "eyebrow_lowered_right_index",
"eyebrow_raised_left_index", "eyebrow_raised_right_index",
"eyebrow_happy_left_index", "eyebrow_happy_right_index",
"eyebrow_serious_left_index", "eyebrow_serious_right_index",
"eye_wink_left_index", "eye_wink_right_index",
"eye_happy_wink_left_index", "eye_happy_wink_right_index",
"eye_surprised_left_index", "eye_surprised_right_index",
"eye_relaxed_left_index", "eye_relaxed_right_index",
"eye_unimpressed", "eye_unimpressed",
"eye_raised_lower_eyelid_left_index", "eye_raised_lower_eyelid_right_index",
"iris_small_left_index", "iris_small_right_index",
"mouth_aaa_index",
"mouth_iii_index",
"mouth_uuu_index",
"mouth_eee_index",
"mouth_ooo_index",
"mouth_delta",
"mouth_lowered_corner_left_index", "mouth_lowered_corner_right_index",
"mouth_raised_corner_left_index", "mouth_raised_corner_right_index",
"mouth_smirk",
"iris_rotation_x_index", "iris_rotation_y_index",
"head_x_index", "head_y_index",
"neck_z_index",
"body_y_index", "body_z_index",
"breathing_index"]
assert len(posedict_keys) == 45
def load_emotion_presets() -> Tuple[Dict[str, Dict[str, float]], List[str]]:
"""Load emotion presets from disk.
These are JSON files in "talkinghead/emotions".
Returns the tuple `(emotions, emotion_names)`, where::
emotions = {emotion0_name: posedict0, ...}
emotion_names = [emotion0_name, emotion1_name, ...]
The dict contains the actual pose data. The list is a sorted list of emotion names
that can be used to map a linear index (e.g. the choice index in a GUI dropdown)
to the corresponding key of `emotions`.
The directory "talkinghead/emotions" must also contain a "_defaults.json" file,
containing factory defaults (as a fallback) for the 28 standard emotions
(as recognized by distilbert), as well as a hidden "zero" preset that represents
a neutral pose. (This is separate from the "neutral" emotion, which is allowed
to be "non-zero".)
"""
emotion_names = []
for root, dirs, files in os.walk("emotions", topdown=True):
for filename in files:
if filename == "_defaults.json": # skip the repository containing the default fallbacks
continue
if filename.lower().endswith(".json"):
emotion_names.append(filename[:-5]) # drop the ".json"
emotion_names.sort() # the 28 actual emotions
# TODO: Note that currently, we build the list of emotion names from JSON filenames,
# and then check whether each JSON implements the emotion matching its filename.
# On second thought, I'm not sure whether that makes much sense. Maybe rethink the design.
# - We *do* want custom JSON files to show up in the list, if those are placed in "tha3/emotions". So the list of emotions shouldn't be hardcoded.
# - *Having* a fallback repository with factory defaults (and a hidden "zero" preset) is useful.
# But we are currently missing a way to reset an emotion to its factory default.
def load_emotion_with_fallback(emotion_name: str) -> Dict[str, float]:
try:
with open(os.path.join("emotions", f"{emotion_name}.json"), "r") as json_file:
emotions_from_json = json.load(json_file) # A single json file may contain presets for multiple emotions.
posedict = emotions_from_json[emotion_name]
except (FileNotFoundError, KeyError): # If no separate json exists for the specified emotion, load the default (all 28 emotions have a default).
with open(os.path.join("emotions", "_defaults.json"), "r") as json_file:
emotions_from_json = json.load(json_file)
posedict = emotions_from_json[emotion_name]
# If still not found, it's an error, so fail-fast: let the app exit with an informative exception message.
return posedict
# Dict keeps its keys in insertion order, so define some special states before inserting the actual emotions.
emotions = {"[custom]": {}, # custom = the user has changed at least one value manually after last loading a preset
"[reset]": load_emotion_with_fallback("zero")} # reset = a preset with all sliders in their default positions. Found in "_defaults.json".
for emotion_name in emotion_names:
emotions[emotion_name] = load_emotion_with_fallback(emotion_name)
emotion_names = list(emotions.keys())
return emotions, emotion_names
class SimpleParamGroupsControlPanel(wx.Panel):
"""A simple control panel for groups of arity-1 continuous parameters (i.e. float value, and no separate left/right controls).
@@ -404,43 +313,6 @@ class MorphCategoryControlPanel(wx.Panel):
self.update_ui()
def convert_output_image_from_torch_to_numpy(output_image):
if output_image.shape[2] == 2:
h, w, c = output_image.shape
numpy_image = torch.transpose(output_image.reshape(h * w, c), 0, 1).reshape(c, h, w)
elif output_image.shape[0] == 4:
numpy_image = rgba_to_numpy_image(output_image)
elif output_image.shape[0] == 3:
numpy_image = rgb_to_numpy_image(output_image)
elif output_image.shape[0] == 1:
c, h, w = output_image.shape
alpha_image = torch.cat([output_image.repeat(3, 1, 1) * 2.0 - 1.0, torch.ones(1, h, w)], dim=0)
numpy_image = rgba_to_numpy_image(alpha_image)
elif output_image.shape[0] == 2:
numpy_image = grid_change_to_numpy_image(output_image, num_channels=4)
else:
raise RuntimeError(f"Unsupported # image channels: {output_image.shape[0]}")
numpy_image = numpy.uint8(numpy.rint(numpy_image * 255.0))
return numpy_image
class FpsStatistics:
def __init__(self):
self.count = 100
self.fps = []
def add_fps(self, fps: float) -> None:
self.fps.append(fps)
while len(self.fps) > self.count:
del self.fps[0]
def get_average_fps(self) -> float:
if len(self.fps) == 0:
return 0.0
else:
return sum(self.fps) / len(self.fps)
class MyFileDropTarget(wx.FileDropTarget):
def OnDropFiles(self, x, y, filenames):
if len(filenames) > 1:
@@ -571,7 +443,7 @@ class MainFrame(wx.Frame):
self.left_panel_sizer.Add(self.source_image_panel, 0, wx.FIXED_MINSIZE)
# Emotion picker.
self.emotions, self.emotion_names = load_emotion_presets()
self.emotions, self.emotion_names = load_emotion_presets("emotions")
# # Horizontal emotion picker layout; looks bad, text label vertical alignment is wrong.
# self.emotion_panel = wx.Panel(self.left_panel, style=wx.SIMPLE_BORDER, size=(-1, -1))
@@ -767,7 +639,7 @@ class MainFrame(wx.Frame):
if len(emotions_from_json) > 1:
logger.warning(f"File {json_file_name} contains multiple emotions, loading the first one '{first_emotion_name}'.")
posedict = emotions_from_json[first_emotion_name]
pose = self.posedict_to_pose(posedict)
pose = posedict_to_pose(posedict)
# Apply loaded emotion
self.set_current_pose(pose)
@@ -863,7 +735,7 @@ class MainFrame(wx.Frame):
emotion_name = self.emotion_choice.GetString(current_emotion_index)
logger.info(f"Loading emotion preset {emotion_name}")
posedict = self.emotions[emotion_name]
pose = self.posedict_to_pose(posedict)
pose = posedict_to_pose(posedict)
self.set_current_pose(pose)
current_pose = pose
else:
@@ -913,7 +785,7 @@ class MainFrame(wx.Frame):
with torch.no_grad():
output_image = self.poser.pose(self.torch_source_image, pose, output_index)[0].detach().cpu()
numpy_image = convert_output_image_from_torch_to_numpy(output_image)
numpy_image = torch_image_to_numpy(output_image)
self.last_output_numpy_image = numpy_image
wx_image = wx.ImageFromBuffer(
numpy_image.shape[0],
@@ -963,25 +835,6 @@ class MainFrame(wx.Frame):
wx.CallAfter(update_images_cont2)
wx.CallAfter(update_images_cont)
def current_pose_to_posedict(self) -> Dict[str, float]:
"""Convert the character's current pose into a posedict for saving into an emotion JSON."""
current_pose_values = self.get_current_pose()
current_pose_dict = dict(zip(posedict_keys, current_pose_values))
return current_pose_dict
def posedict_to_pose(self, posedict: Dict[str, float]) -> List[float]:
"""Convert a posedict (from an emotion JSON) into a list of morph values (in the order the models expect them)."""
# sanity check
unrecognized_keys = set(posedict.keys()) - set(posedict_keys)
if unrecognized_keys:
logger.warning(f"Ignoring unrecognized keys in posedict: {unrecognized_keys}")
# Missing keys are fine - keys for zero values can simply be omitted.
pose = [0.0 for i in range(self.poser.get_num_parameters())]
for idx, key in enumerate(posedict_keys):
pose[idx] = posedict.get(key, 0.0)
return pose
def on_save_image(self, event: wx.Event) -> None:
"""Ask the user for destination and save the output image.
@@ -1036,7 +889,7 @@ class MainFrame(wx.Frame):
current_emotion_old_index = self.emotion_choice.GetSelection()
current_emotion_name = self.emotion_choice.GetString(current_emotion_old_index)
self.emotions, self.emotion_names = load_emotion_presets()
self.emotions, self.emotion_names = load_emotion_presets("emotions")
self.emotion_choice.SetItems(self.emotion_names)
current_emotion_new_index = self.emotion_choice.FindString(current_emotion_name)
@@ -1076,13 +929,13 @@ class MainFrame(wx.Frame):
if emotion_name.startswith("[") and emotion_name.endswith("]"):
continue # skip "[custom]" and "[reset]"
try:
pose = self.posedict_to_pose(posedict)
pose = posedict_to_pose(posedict)
posetensor = torch.tensor(pose, device=self.device, dtype=self.dtype)
output_index = self.output_index_choice.GetSelection()
with torch.no_grad():
output_image = self.poser.pose(self.torch_source_image, posetensor, output_index)[0].detach().cpu()
numpy_image = convert_output_image_from_torch_to_numpy(output_image)
numpy_image = torch_image_to_numpy(output_image)
image_file_name = os.path.join(dir_name, f"{emotion_name}.png")
self.save_numpy_image(numpy_image, image_file_name)
@@ -1107,11 +960,11 @@ class MainFrame(wx.Frame):
os.makedirs(os.path.dirname(image_file_name), exist_ok=True)
pil_image.save(image_file_name)
data_dict = self.current_pose_to_posedict()
pose_dict = pose_to_posedict(self.get_current_pose())
json_file_path = os.path.splitext(image_file_name)[0] + ".json"
filename_without_extension = os.path.splitext(os.path.basename(image_file_name))[0]
data_dict_with_filename = {filename_without_extension: data_dict} # Create a new dict with the filename as the key
data_dict_with_filename = {filename_without_extension: pose_dict} # JSON structure: {emotion_name0: posedict0, ...}
try:
with open(json_file_path, "w") as file:

View File

@@ -0,0 +1,194 @@
"""App-level utilities."""
__all__ = ["posedict_keys", "posedict_key_to_index",
"load_emotion_presets",
"posedict_to_pose", "pose_to_posedict",
"torch_image_to_numpy", "to_talkinghead_image",
"FpsStatistics"]
import logging
import json
import os
from typing import Dict, List, Tuple
import PIL
import numpy
import torch
from tha3.util import rgba_to_numpy_image, rgb_to_numpy_image, grid_change_to_numpy_image
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# The keys for a pose in the emotion JSON files.
#
# TODO: "eye_unimpressed" is arity-2, but has only one entry in the JSON. The current implementation smashes both into one,
# letting the second one (right slider) win. Maybe the two values should be saved separately, but we have to avoid
# breaking the live mode served by `app.py`.
posedict_keys = ["eyebrow_troubled_left_index", "eyebrow_troubled_right_index",
"eyebrow_angry_left_index", "eyebrow_angry_right_index",
"eyebrow_lowered_left_index", "eyebrow_lowered_right_index",
"eyebrow_raised_left_index", "eyebrow_raised_right_index",
"eyebrow_happy_left_index", "eyebrow_happy_right_index",
"eyebrow_serious_left_index", "eyebrow_serious_right_index",
"eye_wink_left_index", "eye_wink_right_index",
"eye_happy_wink_left_index", "eye_happy_wink_right_index",
"eye_surprised_left_index", "eye_surprised_right_index",
"eye_relaxed_left_index", "eye_relaxed_right_index",
"eye_unimpressed", "eye_unimpressed",
"eye_raised_lower_eyelid_left_index", "eye_raised_lower_eyelid_right_index",
"iris_small_left_index", "iris_small_right_index",
"mouth_aaa_index",
"mouth_iii_index",
"mouth_uuu_index",
"mouth_eee_index",
"mouth_ooo_index",
"mouth_delta",
"mouth_lowered_corner_left_index", "mouth_lowered_corner_right_index",
"mouth_raised_corner_left_index", "mouth_raised_corner_right_index",
"mouth_smirk",
"iris_rotation_x_index", "iris_rotation_y_index",
"head_x_index", "head_y_index",
"neck_z_index",
"body_y_index", "body_z_index",
"breathing_index"]
assert len(posedict_keys) == 45
# posedict_keys gives us index->key; make an inverse mapping.
# Note this doesn't work for "eye_unimpressed", because it's not unique. (All the more reason to fix that.)
posedict_key_to_index = {key: idx for idx, key in enumerate(posedict_keys)}
def load_emotion_presets(directory: str) -> Tuple[Dict[str, Dict[str, float]], List[str]]:
"""Load emotion presets from disk.
Returns the tuple `(emotions, emotion_names)`, where::
emotions = {emotion0_name: posedict0, ...}
emotion_names = [emotion0_name, emotion1_name, ...]
The dict contains the actual pose data. The list is a sorted list of emotion names
that can be used to map a linear index (e.g. the choice index in a GUI dropdown)
to the corresponding key of `emotions`.
The directory "talkinghead/emotions" must also contain a "_defaults.json" file,
containing factory defaults (as a fallback) for the 28 standard emotions
(as recognized by distilbert), as well as a hidden "zero" preset that represents
a neutral pose. (This is separate from the "neutral" emotion, which is allowed
to be "non-zero".)
"""
emotion_names = []
for root, dirs, files in os.walk(directory, topdown=True):
for filename in files:
if filename == "_defaults.json": # skip the repository containing the default fallbacks
continue
if filename.lower().endswith(".json"):
emotion_names.append(filename[:-5]) # drop the ".json"
emotion_names.sort() # the 28 actual emotions
# TODO: Note that currently, we build the list of emotion names from JSON filenames,
# and then check whether each JSON implements the emotion matching its filename.
# On second thought, I'm not sure whether that makes much sense. Maybe rethink the design.
# - We *do* want custom JSON files to show up in the list, if those are placed in "tha3/emotions". So the list of emotions shouldn't be hardcoded.
# - *Having* a fallback repository with factory defaults (and a hidden "zero" preset) is useful.
# But we are currently missing a way to reset an emotion to its factory default.
def load_emotion_with_fallback(emotion_name: str) -> Dict[str, float]:
try:
with open(os.path.join(directory, f"{emotion_name}.json"), "r") as json_file:
emotions_from_json = json.load(json_file) # A single json file may contain presets for multiple emotions.
posedict = emotions_from_json[emotion_name]
except (FileNotFoundError, KeyError): # If no separate json exists for the specified emotion, load the default (all 28 emotions have a default).
with open(os.path.join(directory, "_defaults.json"), "r") as json_file:
emotions_from_json = json.load(json_file)
posedict = emotions_from_json[emotion_name]
# If still not found, it's an error, so fail-fast: let the app exit with an informative exception message.
return posedict
# Dict keeps its keys in insertion order, so define some special states before inserting the actual emotions.
emotions = {"[custom]": {}, # custom = the user has changed at least one value manually after last loading a preset
"[reset]": load_emotion_with_fallback("zero")} # reset = a preset with all sliders in their default positions. Found in "_defaults.json".
for emotion_name in emotion_names:
emotions[emotion_name] = load_emotion_with_fallback(emotion_name)
emotion_names = list(emotions.keys())
return emotions, emotion_names
def posedict_to_pose(posedict: Dict[str, float]) -> List[float]:
"""Convert a posedict (from an emotion JSON) into a list of morph values (in the order the models expect them)."""
# sanity check
unrecognized_keys = set(posedict.keys()) - set(posedict_keys)
if unrecognized_keys:
logger.warning(f"posedict_to_pose: ignoring unrecognized keys in posedict: {unrecognized_keys}")
# Missing keys are fine - keys for zero values can simply be omitted.
pose = [0.0 for i in range(len(posedict_keys))]
for idx, key in enumerate(posedict_keys):
pose[idx] = posedict.get(key, 0.0)
return pose
def pose_to_posedict(pose: List[float]) -> Dict[str, float]:
"""Convert `pose` into a posedict for saving into an emotion JSON."""
return dict(zip(posedict_keys, pose))
# --------------------------------------------------------------------------------
# TODO: move the image utils to the lower-level `tha3.util`?
def torch_image_to_numpy(image: torch.tensor) -> numpy.array:
if image.shape[2] == 2:
h, w, c = image.shape
numpy_image = torch.transpose(image.reshape(h * w, c), 0, 1).reshape(c, h, w)
elif image.shape[0] == 4:
numpy_image = rgba_to_numpy_image(image)
elif image.shape[0] == 3:
numpy_image = rgb_to_numpy_image(image)
elif image.shape[0] == 1:
c, h, w = image.shape
alpha_image = torch.cat([image.repeat(3, 1, 1) * 2.0 - 1.0, torch.ones(1, h, w)], dim=0)
numpy_image = rgba_to_numpy_image(alpha_image)
elif image.shape[0] == 2:
numpy_image = grid_change_to_numpy_image(image, num_channels=4)
else:
msg = f"torch_image_to_numpy: unsupported # image channels: {image.shape[0]}"
logger.error(msg)
raise RuntimeError(msg)
numpy_image = numpy.uint8(numpy.rint(numpy_image * 255.0))
return numpy_image
def to_talkinghead_image(image: PIL.Image, new_size: Tuple[int] = (512, 512)) -> PIL.Image:
"""Resize image to `new_size`, add alpha channel, and center.
With default `new_size`:
- Step 1: Resize (Lanczos) the image to maintain the aspect ratio with the larger dimension being 512 pixels.
- Step 2: Create a new image of size 512x512 with transparency.
- Step 3: Paste the resized image into the new image, centered.
"""
image.thumbnail(new_size, PIL.Image.LANCZOS)
new_image = PIL.Image.new("RGBA", new_size)
new_image.paste(image, ((new_size[0] - image.size[0]) // 2,
(new_size[1] - image.size[1]) // 2))
return new_image
# --------------------------------------------------------------------------------
class FpsStatistics:
"""A simple average FPS (frames per second) counter."""
def __init__(self):
self.count = 100
self.fps = []
def add_fps(self, fps: float) -> None:
self.fps.append(fps)
while len(self.fps) > self.count:
del self.fps[0]
def get_average_fps(self) -> float:
if len(self.fps) == 0:
return 0.0
else:
return sum(self.fps) / len(self.fps)

View File

@@ -1,239 +0,0 @@
EYE_LOOK_IN_LEFT = "eyeLookInLeft"
EYE_LOOK_OUT_LEFT = "eyeLookOutLeft"
EYE_LOOK_DOWN_LEFT = "eyeLookDownLeft"
EYE_LOOK_UP_LEFT = "eyeLookUpLeft"
EYE_BLINK_LEFT = "eyeBlinkLeft"
EYE_SQUINT_LEFT = "eyeSquintLeft"
EYE_WIDE_LEFT = "eyeWideLeft"
EYE_LOOK_IN_RIGHT = "eyeLookInRight"
EYE_LOOK_OUT_RIGHT = "eyeLookOutRight"
EYE_LOOK_DOWN_RIGHT = "eyeLookDownRight"
EYE_LOOK_UP_RIGHT = "eyeLookUpRight"
EYE_BLINK_RIGHT = "eyeBlinkRight"
EYE_SQUINT_RIGHT = "eyeSquintRight"
EYE_WIDE_RIGHT = "eyeWideRight"
BROW_DOWN_LEFT = "browDownLeft"
BROW_OUTER_UP_LEFT = "browOuterUpLeft"
BROW_DOWN_RIGHT = "browDownRight"
BROW_OUTER_UP_RIGHT = "browOuterUpRight"
BROW_INNER_UP = "browInnerUp"
NOSE_SNEER_LEFT = "noseSneerLeft"
NOSE_SNEER_RIGHT = "noseSneerRight"
CHEEK_SQUINT_LEFT = "cheekSquintLeft"
CHEEK_SQUINT_RIGHT = "cheekSquintRight"
CHEEK_PUFF = "cheekPuff"
MOUTH_LEFT = "mouthLeft"
MOUTH_DIMPLE_LEFT = "mouthDimpleLeft"
MOUTH_FROWN_LEFT = "mouthFrownLeft"
MOUTH_LOWER_DOWN_LEFT = "mouthLowerDownLeft"
MOUTH_PRESS_LEFT = "mouthPressLeft"
MOUTH_SMILE_LEFT = "mouthSmileLeft"
MOUTH_STRETCH_LEFT = "mouthStretchLeft"
MOUTH_UPPER_UP_LEFT = "mouthUpperUpLeft"
MOUTH_RIGHT = "mouthRight"
MOUTH_DIMPLE_RIGHT = "mouthDimpleRight"
MOUTH_FROWN_RIGHT = "mouthFrownRight"
MOUTH_LOWER_DOWN_RIGHT = "mouthLowerDownRight"
MOUTH_PRESS_RIGHT = "mouthPressRight"
MOUTH_SMILE_RIGHT = "mouthSmileRight"
MOUTH_STRETCH_RIGHT = "mouthStretchRight"
MOUTH_UPPER_UP_RIGHT = "mouthUpperUpRight"
MOUTH_CLOSE = "mouthClose"
MOUTH_FUNNEL = "mouthFunnel"
MOUTH_PUCKER = "mouthPucker"
MOUTH_ROLL_LOWER = "mouthRollLower"
MOUTH_ROLL_UPPER = "mouthRollUpper"
MOUTH_SHRUG_LOWER = "mouthShrugLower"
MOUTH_SHRUG_UPPER = "mouthShrugUpper"
JAW_LEFT = "jawLeft"
JAW_RIGHT = "jawRight"
JAW_FORWARD = "jawForward"
JAW_OPEN = "jawOpen"
TONGUE_OUT = "tongueOut"
BLENDSHAPE_NAMES = [
EYE_LOOK_IN_LEFT, # 0
EYE_LOOK_OUT_LEFT, # 1
EYE_LOOK_DOWN_LEFT, # 2
EYE_LOOK_UP_LEFT, # 3
EYE_BLINK_LEFT, # 4
EYE_SQUINT_LEFT, # 5
EYE_WIDE_LEFT, # 6
EYE_LOOK_IN_RIGHT, # 7
EYE_LOOK_OUT_RIGHT, # 8
EYE_LOOK_DOWN_RIGHT, # 9
EYE_LOOK_UP_RIGHT, # 10
EYE_BLINK_RIGHT, # 11
EYE_SQUINT_RIGHT, # 12
EYE_WIDE_RIGHT, # 13
BROW_DOWN_LEFT, # 14
BROW_OUTER_UP_LEFT, # 15
BROW_DOWN_RIGHT, # 16
BROW_OUTER_UP_RIGHT, # 17
BROW_INNER_UP, # 18
NOSE_SNEER_LEFT, # 19
NOSE_SNEER_RIGHT, # 20
CHEEK_SQUINT_LEFT, # 21
CHEEK_SQUINT_RIGHT, # 22
CHEEK_PUFF, # 23
MOUTH_LEFT, # 24
MOUTH_DIMPLE_LEFT, # 25
MOUTH_FROWN_LEFT, # 26
MOUTH_LOWER_DOWN_LEFT, # 27
MOUTH_PRESS_LEFT, # 28
MOUTH_SMILE_LEFT, # 29
MOUTH_STRETCH_LEFT, # 30
MOUTH_UPPER_UP_LEFT, # 31
MOUTH_RIGHT, # 32
MOUTH_DIMPLE_RIGHT, # 33
MOUTH_FROWN_RIGHT, # 34
MOUTH_LOWER_DOWN_RIGHT, # 35
MOUTH_PRESS_RIGHT, # 36
MOUTH_SMILE_RIGHT, # 37
MOUTH_STRETCH_RIGHT, # 38
MOUTH_UPPER_UP_RIGHT, # 39
MOUTH_CLOSE, # 40
MOUTH_FUNNEL, # 41
MOUTH_PUCKER, # 42
MOUTH_ROLL_LOWER, # 43
MOUTH_ROLL_UPPER, # 44
MOUTH_SHRUG_LOWER, # 45
MOUTH_SHRUG_UPPER, # 46
JAW_LEFT, # 47
JAW_RIGHT, # 48
JAW_FORWARD, # 49
JAW_OPEN, # 50
TONGUE_OUT, # 51
]
EYE_LEFT_BLENDSHAPES = [
EYE_LOOK_IN_LEFT, # 0
EYE_LOOK_OUT_LEFT, # 1
EYE_LOOK_DOWN_LEFT, # 2
EYE_LOOK_UP_LEFT, # 3
EYE_BLINK_LEFT, # 4
EYE_SQUINT_LEFT, # 5
EYE_WIDE_LEFT, # 6
]
EYE_RIGHT_BLENDSHAPES = [
EYE_LOOK_IN_RIGHT, # 7
EYE_LOOK_OUT_RIGHT, # 8
EYE_LOOK_DOWN_RIGHT, # 9
EYE_LOOK_UP_RIGHT, # 10
EYE_BLINK_RIGHT, # 11
EYE_SQUINT_RIGHT, # 12
EYE_WIDE_RIGHT, # 13
]
BROW_LEFT_BLENDSHAPES = [
BROW_DOWN_LEFT, # 14
BROW_OUTER_UP_LEFT, # 15
]
BROW_RIGHT_BLENDSHAPES = [
BROW_DOWN_RIGHT, # 16
BROW_OUTER_UP_RIGHT, # 17
]
BROW_BOTH_BLENDSHAPES = [
BROW_INNER_UP, # 18
]
NOSE_BLENDSHAPES = [
NOSE_SNEER_LEFT, # 19
NOSE_SNEER_RIGHT, # 20
]
CHECK_BLENDSHAPES = [
CHEEK_SQUINT_LEFT, # 21
CHEEK_SQUINT_RIGHT, # 22
CHEEK_PUFF, # 23
]
MOUTH_LEFT_BLENDSHAPES = [
MOUTH_LEFT, # 24
MOUTH_DIMPLE_LEFT, # 25
MOUTH_FROWN_LEFT, # 26
MOUTH_LOWER_DOWN_LEFT, # 27
MOUTH_PRESS_LEFT, # 28
MOUTH_SMILE_LEFT, # 29
MOUTH_STRETCH_LEFT, # 30
MOUTH_UPPER_UP_LEFT, # 31
]
MOUTH_RIGHT_BLENDSHAPES = [
MOUTH_RIGHT, # 32
MOUTH_DIMPLE_RIGHT, # 33
MOUTH_FROWN_RIGHT, # 34
MOUTH_LOWER_DOWN_RIGHT, # 35
MOUTH_PRESS_RIGHT, # 36
MOUTH_SMILE_RIGHT, # 37
MOUTH_STRETCH_RIGHT, # 38
MOUTH_UPPER_UP_RIGHT, # 39
]
MOUTH_BOTH_BLENDSHAPES = [
MOUTH_CLOSE, # 40
MOUTH_FUNNEL, # 41
MOUTH_PUCKER, # 42
MOUTH_ROLL_LOWER, # 43
MOUTH_ROLL_UPPER, # 44
MOUTH_SHRUG_LOWER, # 45
MOUTH_SHRUG_UPPER, # 46
]
JAW_BLENDSHAPES = [
JAW_LEFT, # 47
JAW_RIGHT, # 48
JAW_FORWARD, # 49
JAW_OPEN, # 50
]
TONGUE_BLENDSHAPES = [
TONGUE_OUT, # 51
]
COLUMN_0_BLENDSHAPES = EYE_RIGHT_BLENDSHAPES + BROW_RIGHT_BLENDSHAPES + [NOSE_SNEER_RIGHT, CHEEK_SQUINT_RIGHT]
COLUMN_1_BLENDSHAPES = EYE_LEFT_BLENDSHAPES + BROW_LEFT_BLENDSHAPES + [NOSE_SNEER_LEFT, CHEEK_SQUINT_LEFT]
COLUMN_2_BLENDSHAPES = MOUTH_RIGHT_BLENDSHAPES + [JAW_RIGHT]
COLUMN_3_BLENDSHAPES = MOUTH_LEFT_BLENDSHAPES + [JAW_LEFT]
COLUMN_4_BLENDSHAPES = [BROW_INNER_UP, CHEEK_PUFF] + MOUTH_BOTH_BLENDSHAPES + [JAW_FORWARD, JAW_OPEN, TONGUE_OUT]
BLENDSHAPE_COLUMNS = [
COLUMN_0_BLENDSHAPES,
COLUMN_1_BLENDSHAPES,
COLUMN_2_BLENDSHAPES,
COLUMN_3_BLENDSHAPES,
COLUMN_4_BLENDSHAPES,
]
RIGHT_EYE_BONE_X = "rightEyeBoneX"
RIGHT_EYE_BONE_Y = "rightEyeBoneY"
RIGHT_EYE_BONE_Z = "rightEyeBoneZ"
RIGHT_EYE_BONE_ROTATIONS = [RIGHT_EYE_BONE_X, RIGHT_EYE_BONE_Y, RIGHT_EYE_BONE_Z]
LEFT_EYE_BONE_X = "leftEyeBoneX"
LEFT_EYE_BONE_Y = "leftEyeBoneY"
LEFT_EYE_BONE_Z = "leftEyeBoneZ"
LEFT_EYE_BONE_ROTATIONS = [LEFT_EYE_BONE_X, LEFT_EYE_BONE_Y, LEFT_EYE_BONE_Z]
HEAD_BONE_X = "headBoneX"
HEAD_BONE_Y = "headBoneY"
HEAD_BONE_Z = "headBoneZ"
HEAD_BONE_ROTATIONS = [HEAD_BONE_X, HEAD_BONE_Y, HEAD_BONE_Z]
ROTATION_NAMES = RIGHT_EYE_BONE_ROTATIONS + LEFT_EYE_BONE_ROTATIONS + HEAD_BONE_ROTATIONS
RIGHT_EYE_BONE_QUAT = "rightEyeBoneQuat"
LEFT_EYE_BONE_QUAT = "leftEyeBoneQuat"
HEAD_BONE_QUAT = "headBoneQuat"
QUATERNION_NAMES = [
RIGHT_EYE_BONE_QUAT,
LEFT_EYE_BONE_QUAT,
HEAD_BONE_QUAT
]
IFACIALMOCAP_DATETIME_FORMAT = "%Y/%m/%d-%H:%M:%S.%f"

View File

@@ -1,27 +0,0 @@
from tha3.mocap.ifacialmocap_constants import BLENDSHAPE_NAMES, HEAD_BONE_X, HEAD_BONE_Y, HEAD_BONE_Z, \
HEAD_BONE_QUAT, LEFT_EYE_BONE_X, LEFT_EYE_BONE_Y, LEFT_EYE_BONE_Z, LEFT_EYE_BONE_QUAT, RIGHT_EYE_BONE_X, \
RIGHT_EYE_BONE_Y, RIGHT_EYE_BONE_Z, RIGHT_EYE_BONE_QUAT
def create_default_ifacialmocap_pose():
data = {}
for blendshape_name in BLENDSHAPE_NAMES:
data[blendshape_name] = 0.0
data[HEAD_BONE_X] = 0.0
data[HEAD_BONE_Y] = 0.0
data[HEAD_BONE_Z] = 0.0
data[HEAD_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
data[LEFT_EYE_BONE_X] = 0.0
data[LEFT_EYE_BONE_Y] = 0.0
data[LEFT_EYE_BONE_Z] = 0.0
data[LEFT_EYE_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
data[RIGHT_EYE_BONE_X] = 0.0
data[RIGHT_EYE_BONE_Y] = 0.0
data[RIGHT_EYE_BONE_Z] = 0.0
data[RIGHT_EYE_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
return data

View File

@@ -1,12 +0,0 @@
from abc import ABC, abstractmethod
from typing import Dict, List
class IFacialMocapPoseConverter(ABC):
@abstractmethod
def convert(self, ifacialmocap_pose: Dict[str, float]) -> List[float]:
pass
@abstractmethod
def init_pose_converter_panel(self, parent):
pass

View File

@@ -1,491 +0,0 @@
import math
import time
from enum import Enum
from typing import Optional, Dict, List
import numpy
import scipy.optimize
import wx
from tha3.mocap.ifacialmocap_constants import MOUTH_SMILE_LEFT, MOUTH_SHRUG_UPPER, MOUTH_SMILE_RIGHT, \
BROW_INNER_UP, BROW_OUTER_UP_RIGHT, BROW_OUTER_UP_LEFT, BROW_DOWN_LEFT, BROW_DOWN_RIGHT, EYE_WIDE_LEFT, \
EYE_WIDE_RIGHT, EYE_BLINK_LEFT, EYE_BLINK_RIGHT, CHEEK_SQUINT_LEFT, CHEEK_SQUINT_RIGHT, EYE_LOOK_IN_LEFT, \
EYE_LOOK_OUT_LEFT, EYE_LOOK_IN_RIGHT, EYE_LOOK_OUT_RIGHT, EYE_LOOK_UP_LEFT, EYE_LOOK_UP_RIGHT, EYE_LOOK_DOWN_RIGHT, \
EYE_LOOK_DOWN_LEFT, HEAD_BONE_X, HEAD_BONE_Y, HEAD_BONE_Z, JAW_OPEN, MOUTH_FROWN_LEFT, MOUTH_FROWN_RIGHT, \
MOUTH_LOWER_DOWN_LEFT, MOUTH_LOWER_DOWN_RIGHT, MOUTH_FUNNEL, MOUTH_PUCKER
from tha3.mocap.ifacialmocap_pose_converter import IFacialMocapPoseConverter
from tha3.poser.modes.pose_parameters import get_pose_parameters
class EyebrowDownMode(Enum):
TROUBLED = 1
ANGRY = 2
LOWERED = 3
SERIOUS = 4
class WinkMode(Enum):
NORMAL = 1
RELAXED = 2
def rad_to_deg(rad):
return rad * 180.0 / math.pi
def deg_to_rad(deg):
return deg * math.pi / 180.0
def clamp(x, min_value, max_value):
return max(min_value, min(max_value, x))
class IFacialMocapPoseConverter25Args:
def __init__(self,
lower_smile_threshold: float = 0.4,
upper_smile_threshold: float = 0.6,
eyebrow_down_mode: EyebrowDownMode = EyebrowDownMode.ANGRY,
wink_mode: WinkMode = WinkMode.NORMAL,
eye_surprised_max_value: float = 0.5,
eye_wink_max_value: float = 0.8,
eyebrow_down_max_value: float = 0.4,
cheek_squint_min_value: float = 0.1,
cheek_squint_max_value: float = 0.7,
eye_rotation_factor: float = 1.0 / 0.75,
jaw_open_min_value: float = 0.1,
jaw_open_max_value: float = 0.4,
mouth_frown_max_value: float = 0.6,
mouth_funnel_min_value: float = 0.25,
mouth_funnel_max_value: float = 0.5,
iris_small_left=0.0,
iris_small_right=0.0):
self.iris_small_right = iris_small_left
self.iris_small_left = iris_small_right
self.wink_mode = wink_mode
self.mouth_funnel_max_value = mouth_funnel_max_value
self.mouth_funnel_min_value = mouth_funnel_min_value
self.mouth_frown_max_value = mouth_frown_max_value
self.jaw_open_max_value = jaw_open_max_value
self.jaw_open_min_value = jaw_open_min_value
self.eye_rotation_factor = eye_rotation_factor
self.cheek_squint_max_value = cheek_squint_max_value
self.cheek_squint_min_value = cheek_squint_min_value
self.eyebrow_down_max_value = eyebrow_down_max_value
self.eye_blink_max_value = eye_wink_max_value
self.eye_wide_max_value = eye_surprised_max_value
self.eyebrow_down_mode = eyebrow_down_mode
self.lower_smile_threshold = lower_smile_threshold
self.upper_smile_threshold = upper_smile_threshold
class IFacialMocapPoseConverter25(IFacialMocapPoseConverter):
def __init__(self, args: Optional[IFacialMocapPoseConverter25Args] = None):
super().__init__()
if args is None:
args = IFacialMocapPoseConverter25Args()
self.args = args
pose_parameters = get_pose_parameters()
self.pose_size = 45
self.eyebrow_troubled_left_index = pose_parameters.get_parameter_index("eyebrow_troubled_left")
self.eyebrow_troubled_right_index = pose_parameters.get_parameter_index("eyebrow_troubled_right")
self.eyebrow_angry_left_index = pose_parameters.get_parameter_index("eyebrow_angry_left")
self.eyebrow_angry_right_index = pose_parameters.get_parameter_index("eyebrow_angry_right")
self.eyebrow_happy_left_index = pose_parameters.get_parameter_index("eyebrow_happy_left")
self.eyebrow_happy_right_index = pose_parameters.get_parameter_index("eyebrow_happy_right")
self.eyebrow_raised_left_index = pose_parameters.get_parameter_index("eyebrow_raised_left")
self.eyebrow_raised_right_index = pose_parameters.get_parameter_index("eyebrow_raised_right")
self.eyebrow_lowered_left_index = pose_parameters.get_parameter_index("eyebrow_lowered_left")
self.eyebrow_lowered_right_index = pose_parameters.get_parameter_index("eyebrow_lowered_right")
self.eyebrow_serious_left_index = pose_parameters.get_parameter_index("eyebrow_serious_left")
self.eyebrow_serious_right_index = pose_parameters.get_parameter_index("eyebrow_serious_right")
self.eye_surprised_left_index = pose_parameters.get_parameter_index("eye_surprised_left")
self.eye_surprised_right_index = pose_parameters.get_parameter_index("eye_surprised_right")
self.eye_wink_left_index = pose_parameters.get_parameter_index("eye_wink_left")
self.eye_wink_right_index = pose_parameters.get_parameter_index("eye_wink_right")
self.eye_happy_wink_left_index = pose_parameters.get_parameter_index("eye_happy_wink_left")
self.eye_happy_wink_right_index = pose_parameters.get_parameter_index("eye_happy_wink_right")
self.eye_relaxed_left_index = pose_parameters.get_parameter_index("eye_relaxed_left")
self.eye_relaxed_right_index = pose_parameters.get_parameter_index("eye_relaxed_right")
self.eye_raised_lower_eyelid_left_index = pose_parameters.get_parameter_index("eye_raised_lower_eyelid_left")
self.eye_raised_lower_eyelid_right_index = pose_parameters.get_parameter_index("eye_raised_lower_eyelid_right")
self.iris_small_left_index = pose_parameters.get_parameter_index("iris_small_left")
self.iris_small_right_index = pose_parameters.get_parameter_index("iris_small_right")
self.iris_rotation_x_index = pose_parameters.get_parameter_index("iris_rotation_x")
self.iris_rotation_y_index = pose_parameters.get_parameter_index("iris_rotation_y")
self.head_x_index = pose_parameters.get_parameter_index("head_x")
self.head_y_index = pose_parameters.get_parameter_index("head_y")
self.neck_z_index = pose_parameters.get_parameter_index("neck_z")
self.mouth_aaa_index = pose_parameters.get_parameter_index("mouth_aaa")
self.mouth_iii_index = pose_parameters.get_parameter_index("mouth_iii")
self.mouth_uuu_index = pose_parameters.get_parameter_index("mouth_uuu")
self.mouth_eee_index = pose_parameters.get_parameter_index("mouth_eee")
self.mouth_ooo_index = pose_parameters.get_parameter_index("mouth_ooo")
self.mouth_lowered_corner_left_index = pose_parameters.get_parameter_index("mouth_lowered_corner_left")
self.mouth_lowered_corner_right_index = pose_parameters.get_parameter_index("mouth_lowered_corner_right")
self.mouth_raised_corner_left_index = pose_parameters.get_parameter_index("mouth_raised_corner_left")
self.mouth_raised_corner_right_index = pose_parameters.get_parameter_index("mouth_raised_corner_right")
self.body_y_index = pose_parameters.get_parameter_index("body_y")
self.body_z_index = pose_parameters.get_parameter_index("body_z")
self.breathing_index = pose_parameters.get_parameter_index("breathing")
self.breathing_start_time = time.time()
self.panel = None
def init_pose_converter_panel(self, parent):
self.panel = wx.Panel(parent, style=wx.SIMPLE_BORDER)
self.panel_sizer = wx.BoxSizer(wx.VERTICAL)
self.panel.SetSizer(self.panel_sizer)
self.panel.SetAutoLayout(1)
parent.GetSizer().Add(self.panel, 0, wx.EXPAND)
if True:
eyebrow_down_mode_text = wx.StaticText(self.panel, label=" --- Eyebrow Down Mode --- ",
style=wx.ALIGN_CENTER)
self.panel_sizer.Add(eyebrow_down_mode_text, 0, wx.EXPAND)
self.eyebrow_down_mode_choice = wx.Choice(
self.panel,
choices=[
"ANGRY",
"TROUBLED",
"SERIOUS",
"LOWERED",
])
self.eyebrow_down_mode_choice.SetSelection(0)
self.panel_sizer.Add(self.eyebrow_down_mode_choice, 0, wx.EXPAND)
self.eyebrow_down_mode_choice.Bind(wx.EVT_CHOICE, self.change_eyebrow_down_mode)
separator = wx.StaticLine(self.panel, -1, size=(256, 5))
self.panel_sizer.Add(separator, 0, wx.EXPAND)
if True:
wink_mode_text = wx.StaticText(self.panel, label=" --- Wink Mode --- ", style=wx.ALIGN_CENTER)
self.panel_sizer.Add(wink_mode_text, 0, wx.EXPAND)
self.wink_mode_choice = wx.Choice(
self.panel,
choices=[
"NORMAL",
"RELAXED",
])
self.wink_mode_choice.SetSelection(0)
self.panel_sizer.Add(self.wink_mode_choice, 0, wx.EXPAND)
self.wink_mode_choice.Bind(wx.EVT_CHOICE, self.change_wink_mode)
separator = wx.StaticLine(self.panel, -1, size=(256, 5))
self.panel_sizer.Add(separator, 0, wx.EXPAND)
if True:
iris_size_text = wx.StaticText(self.panel, label=" --- Iris Size --- ", style=wx.ALIGN_CENTER)
self.panel_sizer.Add(iris_size_text, 0, wx.EXPAND)
self.iris_left_slider = wx.Slider(self.panel, minValue=0, maxValue=1000, value=0, style=wx.HORIZONTAL)
self.panel_sizer.Add(self.iris_left_slider, 0, wx.EXPAND)
self.iris_left_slider.Bind(wx.EVT_SLIDER, self.change_iris_size)
self.iris_right_slider = wx.Slider(self.panel, minValue=0, maxValue=1000, value=0, style=wx.HORIZONTAL)
self.panel_sizer.Add(self.iris_right_slider, 0, wx.EXPAND)
self.iris_right_slider.Bind(wx.EVT_SLIDER, self.change_iris_size)
self.iris_right_slider.Enable(False)
self.link_left_right_irises = wx.CheckBox(
self.panel, label="Use same value for both sides")
self.link_left_right_irises.SetValue(True)
self.panel_sizer.Add(self.link_left_right_irises, wx.SizerFlags().CenterHorizontal().Border())
self.link_left_right_irises.Bind(wx.EVT_CHECKBOX, self.link_left_right_irises_clicked)
separator = wx.StaticLine(self.panel, -1, size=(256, 5))
self.panel_sizer.Add(separator, 0, wx.EXPAND)
if True:
iris_size_text = wx.StaticText(self.panel, label=" --- Iris Size --- ", style=wx.ALIGN_CENTER)
self.panel_sizer.Add(iris_size_text, 0, wx.EXPAND)
self.iris_left_slider = wx.Slider(self.panel, minValue=0, maxValue=1000, value=0, style=wx.HORIZONTAL)
self.panel_sizer.Add(self.iris_left_slider, 0, wx.EXPAND)
self.iris_left_slider.Bind(wx.EVT_SLIDER, self.change_iris_size)
self.iris_right_slider = wx.Slider(self.panel, minValue=0, maxValue=1000, value=0, style=wx.HORIZONTAL)
self.panel_sizer.Add(self.iris_right_slider, 0, wx.EXPAND)
self.iris_right_slider.Bind(wx.EVT_SLIDER, self.change_iris_size)
self.iris_right_slider.Enable(False)
self.link_left_right_irises = wx.CheckBox(
self.panel, label="Use same value for both sides")
self.link_left_right_irises.SetValue(True)
self.panel_sizer.Add(self.link_left_right_irises, wx.SizerFlags().CenterHorizontal().Border())
self.link_left_right_irises.Bind(wx.EVT_CHECKBOX, self.link_left_right_irises_clicked)
separator = wx.StaticLine(self.panel, -1, size=(256, 5))
self.panel_sizer.Add(separator, 0, wx.EXPAND)
if True:
breathing_frequency_text = wx.StaticText(
self.panel, label=" --- Breathing --- ", style=wx.ALIGN_CENTER)
self.panel_sizer.Add(breathing_frequency_text, 0, wx.EXPAND)
self.restart_breathing_cycle_button = wx.Button(self.panel, label="Restart Breathing Cycle")
self.restart_breathing_cycle_button.Bind(wx.EVT_BUTTON, self.restart_breathing_cycle_clicked)
self.panel_sizer.Add(self.restart_breathing_cycle_button, 0, wx.EXPAND)
self.breathing_frequency_slider = wx.Slider(
self.panel, minValue=0, maxValue=60, value=20, style=wx.HORIZONTAL)
self.panel_sizer.Add(self.breathing_frequency_slider, 0, wx.EXPAND)
self.breathing_gauge = wx.Gauge(self.panel, style=wx.GA_HORIZONTAL, range=1000)
self.panel_sizer.Add(self.breathing_gauge, 0, wx.EXPAND)
self.panel_sizer.Fit(self.panel)
def restart_breathing_cycle_clicked(self, event: wx.Event):
self.breathing_start_time = time.time()
def change_eyebrow_down_mode(self, event: wx.Event):
selected_index = self.eyebrow_down_mode_choice.GetSelection()
if selected_index == 0:
self.args.eyebrow_down_mode = EyebrowDownMode.ANGRY
elif selected_index == 1:
self.args.eyebrow_down_mode = EyebrowDownMode.TROUBLED
elif selected_index == 2:
self.args.eyebrow_down_mode = EyebrowDownMode.SERIOUS
else:
self.args.eyebrow_down_mode = EyebrowDownMode.LOWERED
def change_wink_mode(self, event: wx.Event):
selected_index = self.wink_mode_choice.GetSelection()
if selected_index == 0:
self.args.wink_mode = WinkMode.NORMAL
else:
self.args.wink_mode = WinkMode.RELAXED
def change_iris_size(self, event: wx.Event):
if self.link_left_right_irises.GetValue():
left_value = self.iris_left_slider.GetValue()
right_value = self.iris_right_slider.GetValue()
if left_value != right_value:
self.iris_right_slider.SetValue(left_value)
self.args.iris_small_left = left_value / 1000.0
self.args.iris_small_right = left_value / 1000.0
else:
self.args.iris_small_left = self.iris_left_slider.GetValue() / 1000.0
self.args.iris_small_right = self.iris_right_slider.GetValue() / 1000.0
def link_left_right_irises_clicked(self, event: wx.Event):
if self.link_left_right_irises.GetValue():
self.iris_right_slider.Enable(False)
else:
self.iris_right_slider.Enable(True)
self.change_iris_size(event)
def decompose_head_body_param(self, param, threshold=2.0 / 3):
if abs(param) < threshold:
return (param, 0.0)
else:
if param < 0:
sign = -1.0
else:
sign = 1.0
return (threshold * sign, (abs(param) - threshold) * sign)
breathing_start_time = time.time()
def convert(self, ifacialmocap_pose: Dict[str, float]) -> List[float]:
pose = [0.0 for i in range(self.pose_size)]
smile_value = \
(ifacialmocap_pose[MOUTH_SMILE_LEFT] + ifacialmocap_pose[MOUTH_SMILE_RIGHT]) / 2.0 \
+ ifacialmocap_pose[MOUTH_SHRUG_UPPER]
if smile_value < self.args.lower_smile_threshold:
smile_degree = 0.0
elif smile_value > self.args.upper_smile_threshold:
smile_degree = 1.0
else:
smile_degree = (smile_value - self.args.lower_smile_threshold) / (
self.args.upper_smile_threshold - self.args.lower_smile_threshold)
# Eyebrow
if True:
brow_inner_up = ifacialmocap_pose[BROW_INNER_UP]
brow_outer_up_right = ifacialmocap_pose[BROW_OUTER_UP_RIGHT]
brow_outer_up_left = ifacialmocap_pose[BROW_OUTER_UP_LEFT]
brow_up_left = clamp(brow_inner_up + brow_outer_up_left, 0.0, 1.0)
brow_up_right = clamp(brow_inner_up + brow_outer_up_right, 0.0, 1.0)
pose[self.eyebrow_raised_left_index] = brow_up_left
pose[self.eyebrow_raised_right_index] = brow_up_right
brow_down_left = (1.0 - smile_degree) \
* clamp(ifacialmocap_pose[BROW_DOWN_LEFT] / self.args.eyebrow_down_max_value, 0.0, 1.0)
brow_down_right = (1.0 - smile_degree) \
* clamp(ifacialmocap_pose[BROW_DOWN_RIGHT] / self.args.eyebrow_down_max_value, 0.0, 1.0)
if self.args.eyebrow_down_mode == EyebrowDownMode.TROUBLED:
pose[self.eyebrow_troubled_left_index] = brow_down_left
pose[self.eyebrow_troubled_right_index] = brow_down_right
elif self.args.eyebrow_down_mode == EyebrowDownMode.ANGRY:
pose[self.eyebrow_angry_left_index] = brow_down_left
pose[self.eyebrow_angry_right_index] = brow_down_right
elif self.args.eyebrow_down_mode == EyebrowDownMode.LOWERED:
pose[self.eyebrow_lowered_left_index] = brow_down_left
pose[self.eyebrow_lowered_right_index] = brow_down_right
elif self.args.eyebrow_down_mode == EyebrowDownMode.SERIOUS:
pose[self.eyebrow_serious_left_index] = brow_down_left
pose[self.eyebrow_serious_right_index] = brow_down_right
brow_happy_value = clamp(smile_value, 0.0, 1.0) * smile_degree
pose[self.eyebrow_happy_left_index] = brow_happy_value
pose[self.eyebrow_happy_right_index] = brow_happy_value
# Eye
if True:
# Surprised
pose[self.eye_surprised_left_index] = clamp(
ifacialmocap_pose[EYE_WIDE_LEFT] / self.args.eye_wide_max_value, 0.0, 1.0)
pose[self.eye_surprised_right_index] = clamp(
ifacialmocap_pose[EYE_WIDE_RIGHT] / self.args.eye_wide_max_value, 0.0, 1.0)
# Wink
if self.args.wink_mode == WinkMode.NORMAL:
wink_left_index = self.eye_wink_left_index
wink_right_index = self.eye_wink_right_index
else:
wink_left_index = self.eye_relaxed_left_index
wink_right_index = self.eye_relaxed_right_index
pose[wink_left_index] = (1.0 - smile_degree) * clamp(
ifacialmocap_pose[EYE_BLINK_LEFT] / self.args.eye_blink_max_value, 0.0, 1.0)
pose[wink_right_index] = (1.0 - smile_degree) * clamp(
ifacialmocap_pose[EYE_BLINK_RIGHT] / self.args.eye_blink_max_value, 0.0, 1.0)
pose[self.eye_happy_wink_left_index] = smile_degree * clamp(
ifacialmocap_pose[EYE_BLINK_LEFT] / self.args.eye_blink_max_value, 0.0, 1.0)
pose[self.eye_happy_wink_right_index] = smile_degree * clamp(
ifacialmocap_pose[EYE_BLINK_RIGHT] / self.args.eye_blink_max_value, 0.0, 1.0)
# Lower eyelid
cheek_squint_denom = self.args.cheek_squint_max_value - self.args.cheek_squint_min_value
pose[self.eye_raised_lower_eyelid_left_index] = \
clamp(
(ifacialmocap_pose[CHEEK_SQUINT_LEFT] - self.args.cheek_squint_min_value) / cheek_squint_denom,
0.0, 1.0)
pose[self.eye_raised_lower_eyelid_right_index] = \
clamp(
(ifacialmocap_pose[CHEEK_SQUINT_RIGHT] - self.args.cheek_squint_min_value) / cheek_squint_denom,
0.0, 1.0)
# Iris rotation
if True:
eye_rotation_y = (ifacialmocap_pose[EYE_LOOK_IN_LEFT]
- ifacialmocap_pose[EYE_LOOK_OUT_LEFT]
- ifacialmocap_pose[EYE_LOOK_IN_RIGHT]
+ ifacialmocap_pose[EYE_LOOK_OUT_RIGHT]) / 2.0 * self.args.eye_rotation_factor
pose[self.iris_rotation_y_index] = clamp(eye_rotation_y, -1.0, 1.0)
eye_rotation_x = (ifacialmocap_pose[EYE_LOOK_UP_LEFT]
+ ifacialmocap_pose[EYE_LOOK_UP_RIGHT]
- ifacialmocap_pose[EYE_LOOK_DOWN_LEFT]
- ifacialmocap_pose[EYE_LOOK_DOWN_RIGHT]) / 2.0 * self.args.eye_rotation_factor
pose[self.iris_rotation_x_index] = clamp(eye_rotation_x, -1.0, 1.0)
# Iris size
if True:
pose[self.iris_small_left_index] = self.args.iris_small_left
pose[self.iris_small_right_index] = self.args.iris_small_right
# Head rotation
if True:
x_param = clamp(-ifacialmocap_pose[HEAD_BONE_X] * 180.0 / math.pi, -15.0, 15.0) / 15.0
pose[self.head_x_index] = x_param
y_param = clamp(-ifacialmocap_pose[HEAD_BONE_Y] * 180.0 / math.pi, -10.0, 10.0) / 10.0
pose[self.head_y_index] = y_param
pose[self.body_y_index] = y_param
z_param = clamp(ifacialmocap_pose[HEAD_BONE_Z] * 180.0 / math.pi, -15.0, 15.0) / 15.0
pose[self.neck_z_index] = z_param
pose[self.body_z_index] = z_param
# Mouth
if True:
jaw_open_denom = self.args.jaw_open_max_value - self.args.jaw_open_min_value
mouth_open = clamp((ifacialmocap_pose[JAW_OPEN] - self.args.jaw_open_min_value) / jaw_open_denom, 0.0, 1.0)
pose[self.mouth_aaa_index] = mouth_open
pose[self.mouth_raised_corner_left_index] = clamp(smile_value, 0.0, 1.0)
pose[self.mouth_raised_corner_right_index] = clamp(smile_value, 0.0, 1.0)
is_mouth_open = mouth_open > 0.0
if not is_mouth_open:
mouth_frown_value = clamp(
(ifacialmocap_pose[MOUTH_FROWN_LEFT] + ifacialmocap_pose[
MOUTH_FROWN_RIGHT]) / self.args.mouth_frown_max_value, 0.0, 1.0)
pose[self.mouth_lowered_corner_left_index] = mouth_frown_value
pose[self.mouth_lowered_corner_right_index] = mouth_frown_value
else:
mouth_lower_down = clamp(
ifacialmocap_pose[MOUTH_LOWER_DOWN_LEFT] + ifacialmocap_pose[MOUTH_LOWER_DOWN_RIGHT], 0.0, 1.0)
mouth_funnel = ifacialmocap_pose[MOUTH_FUNNEL]
mouth_pucker = ifacialmocap_pose[MOUTH_PUCKER]
mouth_point = [mouth_open, mouth_lower_down, mouth_funnel, mouth_pucker]
aaa_point = [1.0, 1.0, 0.0, 0.0]
iii_point = [0.0, 1.0, 0.0, 0.0]
uuu_point = [0.5, 0.3, 0.25, 0.75]
ooo_point = [1.0, 0.5, 0.5, 0.4]
decomp = numpy.array([0, 0, 0, 0])
M = numpy.array([
aaa_point,
iii_point,
uuu_point,
ooo_point
])
def loss(decomp):
return numpy.linalg.norm(numpy.matmul(decomp, M) - mouth_point) \
+ 0.01 * numpy.linalg.norm(decomp, ord=1)
opt_result = scipy.optimize.minimize(
loss, decomp, bounds=[(0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0)])
decomp = opt_result["x"]
restricted_decomp = [decomp.item(0), decomp.item(1), decomp.item(2), decomp.item(3)]
pose[self.mouth_aaa_index] = restricted_decomp[0]
pose[self.mouth_iii_index] = restricted_decomp[1]
mouth_funnel_denom = self.args.mouth_funnel_max_value - self.args.mouth_funnel_min_value
ooo_alpha = clamp((mouth_funnel - self.args.mouth_funnel_min_value) / mouth_funnel_denom, 0.0, 1.0)
uo_value = clamp(restricted_decomp[2] + restricted_decomp[3], 0.0, 1.0)
pose[self.mouth_uuu_index] = uo_value * (1.0 - ooo_alpha)
pose[self.mouth_ooo_index] = uo_value * ooo_alpha
#if self.panel is not None:
#frequency = self.breathing_frequency_slider.GetValue()
frequency = 18 #breathing rate 10-50
if frequency == 0:
#value = 0.0
#pose[self.breathing_index] = value
self.breathing_start_time = time.time()
else:
period = 60.0 / frequency
now = time.time()
diff = now - self.breathing_start_time
frac = (diff % period) / period
value = (-math.cos(2 * math.pi * frac) + 1.0) / 2.0
pose[self.breathing_index] = value
#print("pose", pose[self.breathing_index])
#self.breathing_gauge.SetValue(int(1000 * value))
return pose
def create_ifacialmocap_pose_converter(
args: Optional[IFacialMocapPoseConverter25Args] = None) -> IFacialMocapPoseConverter:
return IFacialMocapPoseConverter25(args)

View File

@@ -1,89 +0,0 @@
import math
from tha3.mocap.ifacialmocap_constants import BLENDSHAPE_NAMES, HEAD_BONE_X, HEAD_BONE_Y, HEAD_BONE_Z, \
RIGHT_EYE_BONE_X, RIGHT_EYE_BONE_Y, RIGHT_EYE_BONE_Z, LEFT_EYE_BONE_X, LEFT_EYE_BONE_Y, LEFT_EYE_BONE_Z, \
HEAD_BONE_QUAT, LEFT_EYE_BONE_QUAT, RIGHT_EYE_BONE_QUAT
IFACIALMOCAP_PORT = 49983
IFACIALMOCAP_START_STRING = "iFacialMocap_sahuasouryya9218sauhuiayeta91555dy3719|sendDataVersion=v2".encode('utf-8')
def parse_ifacialmocap_v2_pose(ifacialmocap_output):
output = {}
parts = ifacialmocap_output.split("|")
for part in parts:
part = part.strip()
if len(part) == 0:
continue
if "&" in part:
components = part.split("&")
assert len(components) == 2
key = components[0]
value = float(components[1]) / 100.0
if key.endswith("_L"):
key = key[:-2] + "Left"
elif key.endswith("_R"):
key = key[:-2] + "Right"
if key in BLENDSHAPE_NAMES:
output[key] = value
elif part.startswith("=head#"):
components = part[len("=head#"):].split(",")
assert len(components) == 6
output[HEAD_BONE_X] = float(components[0]) * math.pi / 180
output[HEAD_BONE_Y] = float(components[1]) * math.pi / 180
output[HEAD_BONE_Z] = float(components[2]) * math.pi / 180
elif part.startswith("rightEye#"):
components = part[len("rightEye#"):].split(",")
output[RIGHT_EYE_BONE_X] = float(components[0]) * math.pi / 180
output[RIGHT_EYE_BONE_Y] = float(components[1]) * math.pi / 180
output[RIGHT_EYE_BONE_Z] = float(components[2]) * math.pi / 180
elif part.startswith("leftEye#"):
components = part[len("leftEye#"):].split(",")
output[LEFT_EYE_BONE_X] = float(components[0]) * math.pi / 180
output[LEFT_EYE_BONE_Y] = float(components[1]) * math.pi / 180
output[LEFT_EYE_BONE_Z] = float(components[2]) * math.pi / 180
output[HEAD_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
output[LEFT_EYE_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
output[RIGHT_EYE_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
return output
def parse_ifacialmocap_v1_pose(ifacialmocap_output):
output = {}
parts = ifacialmocap_output.split("|")
for part in parts:
part = part.strip()
if len(part) == 0:
continue
if part.startswith("=head#"):
components = part[len("=head#"):].split(",")
assert len(components) == 6
output[HEAD_BONE_X] = float(components[0]) * math.pi / 180
output[HEAD_BONE_Y] = float(components[1]) * math.pi / 180
output[HEAD_BONE_Z] = float(components[2]) * math.pi / 180
elif part.startswith("rightEye#"):
components = part[len("rightEye#"):].split(",")
output[RIGHT_EYE_BONE_X] = float(components[0]) * math.pi / 180
output[RIGHT_EYE_BONE_Y] = float(components[1]) * math.pi / 180
output[RIGHT_EYE_BONE_Z] = float(components[2]) * math.pi / 180
elif part.startswith("leftEye#"):
components = part[len("leftEye#"):].split(",")
output[LEFT_EYE_BONE_X] = float(components[0]) * math.pi / 180
output[LEFT_EYE_BONE_Y] = float(components[1]) * math.pi / 180
output[LEFT_EYE_BONE_Z] = float(components[2]) * math.pi / 180
else:
components = part.split("-")
assert len(components) == 2
key = components[0]
value = float(components[1]) / 100.0
if key.endswith("_L"):
key = key[:-2] + "Left"
elif key.endswith("_R"):
key = key[:-2] + "Right"
if key in BLENDSHAPE_NAMES:
output[key] = value
output[HEAD_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
output[LEFT_EYE_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
output[RIGHT_EYE_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
return output

View File

@@ -1,396 +0,0 @@
Attribution 4.0 International
=======================================================================
Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.
Using Creative Commons Public Licenses
Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.
Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:
wiki.creativecommons.org/Considerations_for_licensors
Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If
the licensor's permission is not necessary for any reason--for
example, because of any applicable exception or limitation to
copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More considerations
for the public:
wiki.creativecommons.org/Considerations_for_licensees
=======================================================================
Creative Commons Attribution 4.0 International Public License
By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be interpreted as a contract, You are
granted the Licensed Rights in consideration of Your acceptance of
these terms and conditions, and the Licensor grants You such rights in
consideration of benefits the Licensor receives from making the
Licensed Material available under these terms and conditions.
Section 1 -- Definitions.
a. Adapted Material means material subject to Copyright and Similar
Rights that is derived from or based upon the Licensed Material
and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is
synched in timed relation with a moving image.
b. Adapter's License means the license You apply to Your Copyright
and Similar Rights in Your contributions to Adapted Material in
accordance with the terms and conditions of this Public License.
c. Copyright and Similar Rights means copyright and/or similar rights
closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.
d. Effective Technological Measures means those measures that, in the
absence of proper authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international
agreements.
e. Exceptions and Limitations means fair use, fair dealing, and/or
any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.
f. Licensed Material means the artistic or literary work, database,
or other material to which the Licensor applied this Public
License.
g. Licensed Rights means the rights granted to You subject to the
terms and conditions of this Public License, which are limited to
all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.
h. Licensor means the individual(s) or entity(ies) granting rights
under this Public License.
i. Share means to provide material to the public by any means or
process that requires permission under the Licensed Rights, such
as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material
available to the public including in ways that members of the
public may access the material from a place and at a time
individually chosen by them.
j. Sui Generis Database Rights means rights other than copyright
resulting from Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.
k. You means the individual or entity exercising the Licensed Rights
under this Public License. Your has a corresponding meaning.
Section 2 -- Scope.
a. License grant.
1. Subject to the terms and conditions of this Public License,
the Licensor hereby grants You a worldwide, royalty-free,
non-sublicensable, non-exclusive, irrevocable license to
exercise the Licensed Rights in the Licensed Material to:
a. reproduce and Share the Licensed Material, in whole or
in part; and
b. produce, reproduce, and Share Adapted Material.
2. Exceptions and Limitations. For the avoidance of doubt, where
Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with
its terms and conditions.
3. Term. The term of this Public License is specified in Section
6(a).
4. Media and formats; technical modifications allowed. The
Licensor authorizes You to exercise the Licensed Rights in
all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or
authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including
technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License,
simply making modifications authorized by this Section 2(a)
(4) never produces Adapted Material.
5. Downstream recipients.
a. Offer from the Licensor -- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.
b. No downstream restrictions. You may not offer or impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.
6. No endorsement. Nothing in this Public License constitutes or
may be construed as permission to assert or imply that You
are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as
provided in Section 3(a)(1)(A)(i).
b. Other rights.
1. Moral rights, such as the right of integrity, are not
licensed under this Public License, nor are publicity,
privacy, and/or other similar personality rights; however, to
the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.
2. Patent and trademark rights are not licensed under this
Public License.
3. To the extent possible, the Licensor waives any right to
collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.
Section 3 -- License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the
following conditions.
a. Attribution.
1. If You Share the Licensed Material (including in modified
form), You must:
a. retain the following if it is supplied by the Licensor
with the Licensed Material:
i. identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated);
ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of
warranties;
v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;
b. indicate if You modified the Licensed Material and
retain an indication of any previous modifications; and
c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or
hyperlink to, this Public License.
2. You may satisfy the conditions in Section 3(a)(1) in any
reasonable manner based on the medium, means, and context in
which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required
information.
3. If requested by the Licensor, You must remove any of the
information required by Section 3(a)(1)(A) to the extent
reasonably practicable.
4. If You Share Adapted Material You produce, the Adapter's
License You apply must not prevent recipients of the Adapted
Material from complying with this Public License.
Section 4 -- Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database;
b. if You include all or a substantial portion of the database
contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and
c. You must comply with the conditions in Section 3(a) if You Share
all or a substantial portion of the contents of the database.
For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
c. The disclaimer of warranties and limitation of liability provided
above shall be interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and
waiver of all liability.
Section 6 -- Term and Termination.
a. This Public License applies for the term of the Copyright and
Similar Rights licensed here. However, if You fail to comply with
this Public License, then Your rights under this Public License
terminate automatically.
b. Where Your right to use the Licensed Material has terminated under
Section 6(a), it reinstates:
1. automatically as of the date the violation is cured, provided
it is cured within 30 days of Your discovery of the
violation; or
2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations
of this Public License.
c. For the avoidance of doubt, the Licensor may also offer the
Licensed Material under separate terms or conditions or stop
distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
License.
Section 7 -- Other Terms and Conditions.
a. The Licensor shall not be bound by any additional or different
terms or conditions communicated by You unless expressly agreed.
b. Any arrangements, understandings, or agreements regarding the
Licensed Material not stated herein are separate from and
independent of the terms and conditions of this Public License.
Section 8 -- Interpretation.
a. For the avoidance of doubt, this Public License does not, and
shall not be interpreted to, reduce, limit, restrict, or impose
conditions on any use of the Licensed Material that could lawfully
be made without permission under this Public License.
b. To the extent possible, if any provision of this Public License is
deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and
conditions.
c. No term or condition of this Public License will be waived and no
failure to comply consented to unless expressly agreed to by the
Licensor.
d. Nothing in this Public License constitutes or may be interpreted
as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
=======================================================================
Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.
Creative Commons may be contacted at creativecommons.org.

View File

@@ -1 +0,0 @@
This is the folder to extract the models to.