Merge pull request #247 from ArrangingFear56/main

Implementation for faster-whisper
This commit is contained in:
Cohee
2024-12-10 18:23:39 +02:00
committed by GitHub
5 changed files with 117 additions and 4 deletions

1
.gitignore vendored
View File

@@ -141,3 +141,4 @@ api_key.txt
stt_test.wav
talkinghead/tha3/models
docker/cache
launch.bat

View File

@@ -230,6 +230,19 @@ cd SillyTavern-extras
| `--sd-remote-ssl` | Use SSL for the remote SD backend<br>Default: **False** |
| `--sd-remote-auth` | Specify the `username:password` for the remote SD backend (if required) |
## For faster-whisper instead of whisper when using whisper(extras)
1. Install CUDA 12 and cuDNN 8
2. Install faster-whisper requirements
```
pip install -r requirements-faster-whisper.txt
```
use the `--use-faster-whisper` argument to switch to faster-whisper
Optional:
1. use the `--faster-whisper-type` argument to change compute mode for faster-whisper(ex. `--faster-whisper-type=int8`)
2. use the `--faster-whisper-cpu` argument to switch computing device to cpu
## Coqui TTS
### Running on Mac M1

View File

@@ -0,0 +1,66 @@
"""
Speech-to-text module based on Whisper for SillyTavern Extras
- Whisper github: https://github.com/openai/whisper
Authors:
- Tony Ribeiro (https://github.com/Tony-sama)
Models are saved into user cache folder, example: C:/Users/toto/.cache/whisper
References:
- Code adapted from:
- whisper github: https://github.com/openai/whisper
- oobabooga text-generation-webui github: https://github.com/oobabooga/text-generation-webui
"""
from flask import jsonify, abort, request
from faster_whisper import WhisperModel
DEBUG_PREFIX = "<stt whisper module>"
RECORDING_FILE_PATH = "stt_test.wav"
model_size = "large-v3-turbo"
def load_model(file_path=None,whisper_device="cuda",whisper_compute_type="auto"):
"""
Load given vosk model from file or default to en-us model.
Download model to user cache folder, example: C:/Users/toto/.cache/vosk
"""
if whisper_compute_type=="auto":
whisper_compute_type=(
"int8"
if whisper_device=="cpu"
else "float16")
if file_path is None:
print(f"faster-whisper using {model_size} model with {whisper_compute_type}")
return WhisperModel(model_size, device=whisper_device, compute_type=whisper_compute_type)
else:
print(f"faster-whisper using {file_path} model with {whisper_compute_type}")
return WhisperModel(file_path, device=whisper_device, compute_type=whisper_compute_type)
def process_audio():
"""
Transcript request audio file to text using Whisper
"""
if model is None:
print(DEBUG_PREFIX,"Whisper model not initialized yet.")
return ""
try:
file = request.files.get('AudioFile')
language = request.form.get('language', default=None)
file.save(RECORDING_FILE_PATH)
segments, info = model.transcribe(RECORDING_FILE_PATH, beam_size=5)
transcript=""
for segment in segments:
transcript=transcript+" "+segment.text
print(DEBUG_PREFIX, "Transcripted from audio file (whisper):", transcript)
return jsonify({"transcript": transcript})
except Exception as e: # No exception observed during test but we never know
print(e)
abort(500, DEBUG_PREFIX+" Exception occurs while processing audio")

View File

@@ -0,0 +1,7 @@
ctranslate2==4.4.0
huggingface_hub>=0.13
tokenizers>=0.13,<1
onnxruntime>=1.14,<2
av>=11
tqdm
faster-whisper

View File

@@ -935,7 +935,12 @@ parser.add_argument("--max-content-length", help="Set the max")
parser.add_argument("--rvc-save-file", action="store_true", help="Save the last rvc input/output audio file into data/tmp/ folder (for research)")
parser.add_argument("--stt-vosk-model-path", help="Load a custom vosk speech-to-text model")
parser.add_argument("--stt-whisper-model-path", help="Load a custom vosk speech-to-text model")
parser.add_argument("--stt-whisper-model-path", help="Load a custom whisper speech-to-text model")
parser.add_argument("--use-faster-whisper", action="store_true", help="Choose to use faster-whisper instead of whisper")
parser.add_argument("--faster-whisper-cpu", action="store_true", help="Use cpu to run faster-whisper, saves VRAM but much slower")
parser.add_argument("--faster-whisper-type", help="Choose faster-whisper compute type, defaults to float16 for cuda and int8 for cpu")
# sd_group = parser.add_mutually_exclusive_group()
local_sd = parser.add_argument_group("sd-local")
@@ -1161,15 +1166,36 @@ if "vosk-stt" in modules:
app.add_url_rule("/api/speech-recognition/vosk/process-audio", view_func=vosk_module.process_audio, methods=["POST"])
if "whisper-stt" in modules:
print("Initializing Whisper speech-recognition (from ST request file)")
whisper_fast=(
True
if args.use_faster_whisper
else False)
whisper_model_path = (
args.stt_whisper_model_path
if args.stt_whisper_model_path
else None)
import modules.speech_recognition.whisper_module as whisper_module
if whisper_fast:
faster_whisper_device=(
"cpu"
if args.faster_whisper_cpu
else "cuda")
faster_whisper_type=(
args.faster_whisper_type
if args.faster_whisper_type
else "auto")
print(f"Initializing Faster-Whisper speech-recognition (from ST request file) on {faster_whisper_device}")
import modules.speech_recognition.faster_whisper_module as whisper_module
whisper_module.model = whisper_module.load_model(file_path=whisper_model_path,whisper_device=faster_whisper_device,whisper_compute_type=faster_whisper_type)
else:
print("Initializing Whisper speech-recognition (from ST request file)")
import modules.speech_recognition.whisper_module as whisper_module
whisper_module.model = whisper_module.load_model(file_path=whisper_model_path)
whisper_module.model = whisper_module.load_model(file_path=whisper_model_path)
app.add_url_rule("/api/speech-recognition/whisper/process-audio", view_func=whisper_module.process_audio, methods=["POST"])
if "streaming-stt" in modules: