mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-26 19:19:53 +00:00
Support zimage omni base model. (#11979)
This commit is contained in:
@@ -1150,6 +1150,7 @@ class CosmosPredict2(BaseModel):
|
||||
class Lumina2(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lumina.model.NextDiT)
|
||||
self.memory_usage_factor_conds = ("ref_latents",)
|
||||
|
||||
def extra_conds(self, **kwargs):
|
||||
out = super().extra_conds(**kwargs)
|
||||
@@ -1169,6 +1170,35 @@ class Lumina2(BaseModel):
|
||||
if clip_text_pooled is not None:
|
||||
out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)
|
||||
|
||||
clip_vision_outputs = kwargs.get("clip_vision_outputs", list(map(lambda a: a.get("clip_vision_output"), kwargs.get("unclip_conditioning", [{}])))) # Z Image omni
|
||||
if clip_vision_outputs is not None and len(clip_vision_outputs) > 0:
|
||||
sigfeats = []
|
||||
for clip_vision_output in clip_vision_outputs:
|
||||
if clip_vision_output is not None:
|
||||
image_size = clip_vision_output.image_sizes[0]
|
||||
shape = clip_vision_output.last_hidden_state.shape
|
||||
sigfeats.append(clip_vision_output.last_hidden_state.reshape(shape[0], image_size[1] // 16, image_size[2] // 16, shape[-1]))
|
||||
if len(sigfeats) > 0:
|
||||
out['siglip_feats'] = comfy.conds.CONDList(sigfeats)
|
||||
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
latents = []
|
||||
for lat in ref_latents:
|
||||
latents.append(self.process_latent_in(lat))
|
||||
out['ref_latents'] = comfy.conds.CONDList(latents)
|
||||
|
||||
ref_contexts = kwargs.get("reference_latents_text_embeds", None)
|
||||
if ref_contexts is not None:
|
||||
out['ref_contexts'] = comfy.conds.CONDList(ref_contexts)
|
||||
|
||||
return out
|
||||
|
||||
def extra_conds_shapes(self, **kwargs):
|
||||
out = {}
|
||||
ref_latents = kwargs.get("reference_latents", None)
|
||||
if ref_latents is not None:
|
||||
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()[2:]), ref_latents))])
|
||||
return out
|
||||
|
||||
class WAN21(BaseModel):
|
||||
|
||||
Reference in New Issue
Block a user