diff --git a/comfy/ldm/ace/ace_step15.py b/comfy/ldm/ace/ace_step15.py index f2b130bc1..1d7dc59a8 100644 --- a/comfy/ldm/ace/ace_step15.py +++ b/comfy/ldm/ace/ace_step15.py @@ -7,6 +7,67 @@ from comfy.ldm.modules.attention import optimized_attention import comfy.model_management from comfy.ldm.flux.layers import timestep_embedding +def get_silence_latent(length, device): + head = torch.tensor([[[ 0.5707, 0.0982, 0.6909, -0.5658, 0.6266, 0.6996, -0.1365, -0.1291, + -0.0776, -0.1171, -0.2743, -0.8422, -0.1168, 1.5539, -4.6936, 0.7436, + -1.1846, -0.2637, 0.6933, -6.7266, 0.0966, -0.1187, -0.3501, -1.1736, + 0.0587, -2.0517, -1.3651, 0.7508, -0.2490, -1.3548, -0.1290, -0.7261, + 1.1132, -0.3249, 0.2337, 0.3004, 0.6605, -0.0298, -0.1989, -0.4041, + 0.2843, -1.0963, -0.5519, 0.2639, -1.0436, -0.1183, 0.0640, 0.4460, + -1.1001, -0.6172, -1.3241, 1.1379, 0.5623, -0.1507, -0.1963, -0.4742, + -2.4697, 0.5302, 0.5381, 0.4636, -0.1782, -0.0687, 1.0333, 0.4202], + [ 0.3040, -0.1367, 0.6200, 0.0665, -0.0642, 0.4655, -0.1187, -0.0440, + 0.2941, -0.2753, 0.0173, -0.2421, -0.0147, 1.5603, -2.7025, 0.7907, + -0.9736, -0.0682, 0.1294, -5.0707, -0.2167, 0.3302, -0.1513, -0.8100, + -0.3894, -0.2884, -0.3149, 0.8660, -0.3817, -1.7061, 0.5824, -0.4840, + 0.6938, 0.1859, 0.1753, 0.3081, 0.0195, 0.1403, -0.0754, -0.2091, + 0.1251, -0.1578, -0.4968, -0.1052, -0.4554, -0.0320, 0.1284, 0.4974, + -1.1889, -0.0344, -0.8313, 0.2953, 0.5445, -0.6249, -0.1595, -0.0682, + -3.1412, 0.0484, 0.4153, 0.8260, -0.1526, -0.0625, 0.5366, 0.8473], + [ 5.3524e-02, -1.7534e-01, 5.4443e-01, -4.3501e-01, -2.1317e-03, + 3.7200e-01, -4.0143e-03, -1.5516e-01, -1.2968e-01, -1.5375e-01, + -7.7107e-02, -2.0593e-01, -3.2780e-01, 1.5142e+00, -2.6101e+00, + 5.8698e-01, -1.2716e+00, -2.4773e-01, -2.7933e-02, -5.0799e+00, + 1.1601e-01, 4.0987e-01, -2.2030e-02, -6.6495e-01, -2.0995e-01, + -6.3474e-01, -1.5893e-01, 8.2745e-01, -2.2992e-01, -1.6816e+00, + 5.4440e-01, -4.9579e-01, 5.5128e-01, 3.0477e-01, 8.3052e-02, + -6.1782e-02, 5.9036e-03, 2.9553e-01, -8.0645e-02, -1.0060e-01, + 1.9144e-01, -3.8124e-01, -7.2949e-01, 2.4520e-02, -5.0814e-01, + 2.3977e-01, 9.2943e-02, 3.9256e-01, -1.1993e+00, -3.2752e-01, + -7.2707e-01, 2.9476e-01, 4.3542e-01, -8.8597e-01, -4.1686e-01, + -8.5390e-02, -2.9018e+00, 6.4988e-02, 5.3945e-01, 9.1988e-01, + 5.8762e-02, -7.0098e-02, 6.4772e-01, 8.9118e-01], + [-3.2225e-02, -1.3195e-01, 5.6411e-01, -5.4766e-01, -5.2170e-03, + 3.1425e-01, -5.4367e-02, -1.9419e-01, -1.3059e-01, -1.3660e-01, + -9.0984e-02, -1.9540e-01, -2.5590e-01, 1.5440e+00, -2.6349e+00, + 6.8273e-01, -1.2532e+00, -1.9810e-01, -2.2793e-02, -5.0506e+00, + 1.8818e-01, 5.0109e-01, 7.3546e-03, -6.8771e-01, -3.0676e-01, + -7.3257e-01, -1.6687e-01, 9.2232e-01, -1.8987e-01, -1.7267e+00, + 5.3355e-01, -5.3179e-01, 4.4953e-01, 2.8820e-01, 1.3012e-01, + -2.0943e-01, -1.1348e-01, 3.3929e-01, -1.5069e-01, -1.2919e-01, + 1.8929e-01, -3.6166e-01, -8.0756e-01, 6.6387e-02, -5.8867e-01, + 1.6978e-01, 1.0134e-01, 3.3877e-01, -1.2133e+00, -3.2492e-01, + -8.1237e-01, 3.8101e-01, 4.3765e-01, -8.0596e-01, -4.4531e-01, + -4.7513e-02, -2.9266e+00, 1.1741e-03, 4.5123e-01, 9.3075e-01, + 5.3688e-02, -1.9621e-01, 6.4530e-01, 9.3870e-01]]], device=device).movedim(-1, 1) + + silence_latent = torch.tensor([[[-1.3672e-01, -1.5820e-01, 5.8594e-01, -5.7422e-01, 3.0273e-02, + 2.7930e-01, -2.5940e-03, -2.0703e-01, -1.6113e-01, -1.4746e-01, + -2.7710e-02, -1.8066e-01, -2.9688e-01, 1.6016e+00, -2.6719e+00, + 7.7734e-01, -1.3516e+00, -1.9434e-01, -7.1289e-02, -5.0938e+00, + 2.4316e-01, 4.7266e-01, 4.6387e-02, -6.6406e-01, -2.1973e-01, + -6.7578e-01, -1.5723e-01, 9.5312e-01, -2.0020e-01, -1.7109e+00, + 5.8984e-01, -5.7422e-01, 5.1562e-01, 2.8320e-01, 1.4551e-01, + -1.8750e-01, -5.9814e-02, 3.6719e-01, -1.0059e-01, -1.5723e-01, + 2.0605e-01, -4.3359e-01, -8.2812e-01, 4.5654e-02, -6.6016e-01, + 1.4844e-01, 9.4727e-02, 3.8477e-01, -1.2578e+00, -3.3203e-01, + -8.5547e-01, 4.3359e-01, 4.2383e-01, -8.9453e-01, -5.0391e-01, + -5.6152e-02, -2.9219e+00, -2.4658e-02, 5.0391e-01, 9.8438e-01, + 7.2754e-02, -2.1582e-01, 6.3672e-01, 1.0000e+00]]], device=device).movedim(-1, 1).repeat(1, 1, length) + silence_latent[:, :, :head.shape[-1]] = head + return silence_latent + + def get_layer_class(operations, layer_name): if operations is not None and hasattr(operations, layer_name): return getattr(operations, layer_name) @@ -677,7 +738,7 @@ class AttentionPooler(nn.Module): def forward(self, x): B, T, P, D = x.shape x = self.embed_tokens(x) - special = self.special_token.expand(B, T, 1, -1) + special = comfy.model_management.cast_to(self.special_token, device=x.device, dtype=x.dtype).expand(B, T, 1, -1) x = torch.cat([special, x], dim=2) x = x.view(B * T, P + 1, D) @@ -728,7 +789,7 @@ class FSQ(nn.Module): self.register_buffer('implicit_codebook', implicit_codebook, persistent=False) def bound(self, z): - levels_minus_1 = (self._levels - 1).to(z.dtype) + levels_minus_1 = (comfy.model_management.cast_to(self._levels, device=z.device, dtype=z.dtype) - 1) scale = 2. / levels_minus_1 bracket = (levels_minus_1 * (torch.tanh(z) + 1) / 2.) + 0.5 @@ -743,8 +804,8 @@ class FSQ(nn.Module): return codes_non_centered.float() * (2. / (self._levels.float() - 1)) - 1. def codes_to_indices(self, zhat): - zhat_normalized = (zhat + 1.) / (2. / (self._levels.to(zhat.dtype) - 1)) - return (zhat_normalized * self._basis.to(zhat.dtype)).sum(dim=-1).round().to(torch.int32) + zhat_normalized = (zhat + 1.) / (2. / (comfy.model_management.cast_to(self._levels, device=zhat.device, dtype=zhat.dtype) - 1)) + return (zhat_normalized * comfy.model_management.cast_to(self._basis, device=zhat.device, dtype=zhat.dtype)).sum(dim=-1).round().to(torch.int32) def forward(self, z): orig_dtype = z.dtype @@ -826,7 +887,7 @@ class ResidualFSQ(nn.Module): x = self.project_in(x) if hasattr(self, 'soft_clamp_input_value'): - sc_val = self.soft_clamp_input_value.to(x.dtype) + sc_val = comfy.model_management.cast_to(self.soft_clamp_input_value, device=x.device, dtype=x.dtype) x = (x / sc_val).tanh() * sc_val quantized_out = torch.tensor(0., device=x.device, dtype=x.dtype) @@ -834,7 +895,7 @@ class ResidualFSQ(nn.Module): all_indices = [] for layer, scale in zip(self.layers, self.scales): - scale = scale.to(residual.dtype) + scale = comfy.model_management.cast_to(scale, device=x.device, dtype=x.dtype) quantized, indices = layer(residual / scale) quantized = quantized * scale @@ -1040,22 +1101,21 @@ class AceStepConditionGenerationModel(nn.Module): lm_hints = self.detokenizer(lm_hints_5Hz) lm_hints = lm_hints[:, :src_latents.shape[1], :] - if is_covers is None: + if is_covers is None or is_covers is True: src_latents = lm_hints - else: - src_latents = torch.where(is_covers.unsqueeze(-1).unsqueeze(-1) > 0, lm_hints, src_latents) + elif is_covers is False: + src_latents = refer_audio_acoustic_hidden_states_packed context_latents = torch.cat([src_latents, chunk_masks.to(src_latents.dtype)], dim=-1) return encoder_hidden, encoder_mask, context_latents - def forward(self, x, timestep, context, lyric_embed=None, refer_audio=None, audio_codes=None, **kwargs): + def forward(self, x, timestep, context, lyric_embed=None, refer_audio=None, audio_codes=None, is_covers=None, replace_with_null_embeds=False, **kwargs): text_attention_mask = None lyric_attention_mask = None refer_audio_order_mask = None attention_mask = None chunk_masks = None - is_covers = None src_latents = None precomputed_lm_hints_25Hz = None lyric_hidden_states = lyric_embed @@ -1067,7 +1127,7 @@ class AceStepConditionGenerationModel(nn.Module): if refer_audio_order_mask is None: refer_audio_order_mask = torch.zeros((x.shape[0],), device=x.device, dtype=torch.long) - if src_latents is None and is_covers is None: + if src_latents is None: src_latents = x if chunk_masks is None: @@ -1080,6 +1140,9 @@ class AceStepConditionGenerationModel(nn.Module): src_latents, chunk_masks, is_covers, precomputed_lm_hints_25Hz=precomputed_lm_hints_25Hz, audio_codes=audio_codes ) + if replace_with_null_embeds: + enc_hidden[:] = self.null_condition_emb.to(enc_hidden) + out = self.decoder(hidden_states=x, timestep=timestep, timestep_r=timestep, diff --git a/comfy/ldm/cosmos/predict2.py b/comfy/ldm/cosmos/predict2.py index c270e6333..2268bff38 100644 --- a/comfy/ldm/cosmos/predict2.py +++ b/comfy/ldm/cosmos/predict2.py @@ -335,7 +335,7 @@ class FinalLayer(nn.Module): device=None, dtype=None, operations=None ): super().__init__() - self.layer_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) + self.layer_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = operations.Linear( hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, device=device, dtype=dtype ) @@ -463,6 +463,8 @@ class Block(nn.Module): extra_per_block_pos_emb: Optional[torch.Tensor] = None, transformer_options: Optional[dict] = {}, ) -> torch.Tensor: + residual_dtype = x_B_T_H_W_D.dtype + compute_dtype = emb_B_T_D.dtype if extra_per_block_pos_emb is not None: x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb @@ -512,7 +514,7 @@ class Block(nn.Module): result_B_T_H_W_D = rearrange( self.self_attn( # normalized_x_B_T_HW_D, - rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"), + rearrange(normalized_x_B_T_H_W_D.to(compute_dtype), "b t h w d -> b (t h w) d"), None, rope_emb=rope_emb_L_1_1_D, transformer_options=transformer_options, @@ -522,7 +524,7 @@ class Block(nn.Module): h=H, w=W, ) - x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D * result_B_T_H_W_D + x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D.to(residual_dtype) * result_B_T_H_W_D.to(residual_dtype) def _x_fn( _x_B_T_H_W_D: torch.Tensor, @@ -536,7 +538,7 @@ class Block(nn.Module): ) _result_B_T_H_W_D = rearrange( self.cross_attn( - rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"), + rearrange(_normalized_x_B_T_H_W_D.to(compute_dtype), "b t h w d -> b (t h w) d"), crossattn_emb, rope_emb=rope_emb_L_1_1_D, transformer_options=transformer_options, @@ -555,7 +557,7 @@ class Block(nn.Module): shift_cross_attn_B_T_1_1_D, transformer_options=transformer_options, ) - x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D + x_B_T_H_W_D = result_B_T_H_W_D.to(residual_dtype) * gate_cross_attn_B_T_1_1_D.to(residual_dtype) + x_B_T_H_W_D normalized_x_B_T_H_W_D = _fn( x_B_T_H_W_D, @@ -563,8 +565,8 @@ class Block(nn.Module): scale_mlp_B_T_1_1_D, shift_mlp_B_T_1_1_D, ) - result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D) - x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D * result_B_T_H_W_D + result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D.to(compute_dtype)) + x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D.to(residual_dtype) * result_B_T_H_W_D.to(residual_dtype) return x_B_T_H_W_D @@ -876,6 +878,14 @@ class MiniTrainDIT(nn.Module): "extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "transformer_options": kwargs.get("transformer_options", {}), } + + # The residual stream for this model has large values. To make fp16 compute_dtype work, we keep the residual stream + # in fp32, but run attention and MLP modules in fp16. + # An alternate method that clamps fp16 values "works" in the sense that it makes coherent images, but there is noticeable + # quality degradation and visual artifacts. + if x_B_T_H_W_D.dtype == torch.float16: + x_B_T_H_W_D = x_B_T_H_W_D.float() + for block in self.blocks: x_B_T_H_W_D = block( x_B_T_H_W_D, @@ -884,6 +894,6 @@ class MiniTrainDIT(nn.Module): **block_kwargs, ) - x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D) + x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D.to(crossattn_emb.dtype), t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D) x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)[:, :, :orig_shape[-3], :orig_shape[-2], :orig_shape[-1]] return x_B_C_Tt_Hp_Wp diff --git a/comfy/model_base.py b/comfy/model_base.py index a2a34f191..858789b30 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -147,11 +147,11 @@ class BaseModel(torch.nn.Module): self.diffusion_model.to(memory_format=torch.channels_last) logging.debug("using channels last mode for diffusion model") logging.info("model weight dtype {}, manual cast: {}".format(self.get_dtype(), self.manual_cast_dtype)) + comfy.model_management.archive_model_dtypes(self.diffusion_model) + self.model_type = model_type self.model_sampling = model_sampling(model_config, model_type) - comfy.model_management.archive_model_dtypes(self.diffusion_model) - self.adm_channels = unet_config.get("adm_in_channels", None) if self.adm_channels is None: self.adm_channels = 0 @@ -1552,6 +1552,8 @@ class ACEStep15(BaseModel): cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: + if torch.count_nonzero(cross_attn) == 0: + out['replace_with_null_embeds'] = comfy.conds.CONDConstant(True) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) conditioning_lyrics = kwargs.get("conditioning_lyrics", None) @@ -1560,22 +1562,11 @@ class ACEStep15(BaseModel): refer_audio = kwargs.get("reference_audio_timbre_latents", None) if refer_audio is None or len(refer_audio) == 0: - refer_audio = torch.tensor([[[-1.3672e-01, -1.5820e-01, 5.8594e-01, -5.7422e-01, 3.0273e-02, - 2.7930e-01, -2.5940e-03, -2.0703e-01, -1.6113e-01, -1.4746e-01, - -2.7710e-02, -1.8066e-01, -2.9688e-01, 1.6016e+00, -2.6719e+00, - 7.7734e-01, -1.3516e+00, -1.9434e-01, -7.1289e-02, -5.0938e+00, - 2.4316e-01, 4.7266e-01, 4.6387e-02, -6.6406e-01, -2.1973e-01, - -6.7578e-01, -1.5723e-01, 9.5312e-01, -2.0020e-01, -1.7109e+00, - 5.8984e-01, -5.7422e-01, 5.1562e-01, 2.8320e-01, 1.4551e-01, - -1.8750e-01, -5.9814e-02, 3.6719e-01, -1.0059e-01, -1.5723e-01, - 2.0605e-01, -4.3359e-01, -8.2812e-01, 4.5654e-02, -6.6016e-01, - 1.4844e-01, 9.4727e-02, 3.8477e-01, -1.2578e+00, -3.3203e-01, - -8.5547e-01, 4.3359e-01, 4.2383e-01, -8.9453e-01, -5.0391e-01, - -5.6152e-02, -2.9219e+00, -2.4658e-02, 5.0391e-01, 9.8438e-01, - 7.2754e-02, -2.1582e-01, 6.3672e-01, 1.0000e+00]]], device=device).movedim(-1, 1).repeat(1, 1, noise.shape[2]) + refer_audio = comfy.ldm.ace.ace_step15.get_silence_latent(noise.shape[2], device) pass_audio_codes = True else: refer_audio = refer_audio[-1][:, :, :noise.shape[2]] + out['is_covers'] = comfy.conds.CONDConstant(True) pass_audio_codes = False if pass_audio_codes: @@ -1583,6 +1574,12 @@ class ACEStep15(BaseModel): if audio_codes is not None: out['audio_codes'] = comfy.conds.CONDRegular(torch.tensor(audio_codes, device=device)) refer_audio = refer_audio[:, :, :750] + else: + out['is_covers'] = comfy.conds.CONDConstant(False) + + if refer_audio.shape[2] < noise.shape[2]: + pad = comfy.ldm.ace.ace_step15.get_silence_latent(noise.shape[2], device) + refer_audio = torch.cat([refer_audio.to(pad), pad[:, :, refer_audio.shape[2]:]], dim=2) out['refer_audio'] = comfy.conds.CONDRegular(refer_audio) return out diff --git a/comfy/model_management.py b/comfy/model_management.py index b6291f340..6018c1ab6 100644 --- a/comfy/model_management.py +++ b/comfy/model_management.py @@ -19,7 +19,7 @@ import psutil import logging from enum import Enum -from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram +from comfy.cli_args import args, PerformanceFeature import threading import torch import sys @@ -651,7 +651,7 @@ def free_memory(memory_required, device, keep_loaded=[], for_dynamic=False, ram_ soft_empty_cache() return unloaded_models -def load_models_gpu_orig(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False): +def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False): cleanup_models_gc() global vram_state @@ -747,26 +747,6 @@ def load_models_gpu_orig(models, memory_required=0, force_patch_weights=False, m current_loaded_models.insert(0, loaded_model) return -def load_models_gpu_thread(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load): - with torch.inference_mode(): - load_models_gpu_orig(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load) - soft_empty_cache() - -def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False): - #Deliberately load models outside of the Aimdo mempool so they can be retained accross - #nodes. Use a dummy thread to do it as pytorch documents that mempool contexts are - #thread local. So exploit that to escape context - if enables_dynamic_vram(): - t = threading.Thread( - target=load_models_gpu_thread, - args=(models, memory_required, force_patch_weights, minimum_memory_required, force_full_load) - ) - t.start() - t.join() - else: - load_models_gpu_orig(models, memory_required=memory_required, force_patch_weights=force_patch_weights, - minimum_memory_required=minimum_memory_required, force_full_load=force_full_load) - def load_model_gpu(model): return load_models_gpu([model]) @@ -1226,21 +1206,16 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str if dtype is None: dtype = weight._model_dtype - r = torch.empty_like(weight, dtype=dtype, device=device) - signature = comfy_aimdo.model_vbar.vbar_fault(weight._v) if signature is not None: - raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device) - v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, raw_tensor)[0] + v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, weight._v_tensor)[0] if not comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature): weight._v_signature = signature #Send it over v_tensor.copy_(weight, non_blocking=non_blocking) - #always take a deep copy even if _v is good, as we have no reasonable point to unpin - #a non comfy weight - r.copy_(v_tensor) - comfy_aimdo.model_vbar.vbar_unpin(weight._v) - return r + return v_tensor.to(dtype=dtype) + + r = torch.empty_like(weight, dtype=dtype, device=device) if weight.dtype != r.dtype and weight.dtype != weight._model_dtype: #Offloaded casting could skip this, however it would make the quantizations diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index d888dbcfb..19c9031ea 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -19,7 +19,6 @@ from __future__ import annotations import collections -import copy import inspect import logging import math @@ -317,7 +316,7 @@ class ModelPatcher: n.object_patches = self.object_patches.copy() n.weight_wrapper_patches = self.weight_wrapper_patches.copy() - n.model_options = copy.deepcopy(self.model_options) + n.model_options = comfy.utils.deepcopy_list_dict(self.model_options) n.backup = self.backup n.object_patches_backup = self.object_patches_backup n.parent = self @@ -1492,7 +1491,9 @@ class ModelPatcherDynamic(ModelPatcher): if vbar is not None: vbar.prioritize() - #We have way more tools for acceleration on comfy weight offloading, so always + #We force reserve VRAM for the non comfy-weight so we dont have to deal + #with pin and unpin syncrhonization which can be expensive for small weights + #with a high layer rate (e.g. autoregressive LLMs). #prioritize the non-comfy weights (note the order reverse). loading = self._load_list(prio_comfy_cast_weights=True) loading.sort(reverse=True) @@ -1541,6 +1542,7 @@ class ModelPatcherDynamic(ModelPatcher): if vbar is not None and not hasattr(m, "_v"): m._v = vbar.alloc(v_weight_size) + m._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(m._v, device_to) allocated_size += v_weight_size else: @@ -1555,8 +1557,10 @@ class ModelPatcherDynamic(ModelPatcher): weight_size = geometry.numel() * geometry.element_size() if vbar is not None and not hasattr(weight, "_v"): weight._v = vbar.alloc(weight_size) + weight._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device_to) weight._model_dtype = model_dtype allocated_size += weight_size + vbar.set_watermark_limit(allocated_size) logging.info(f"Model {self.model.__class__.__name__} prepared for dynamic VRAM loading. {allocated_size // (1024 ** 2)}MB Staged. {num_patches} patches attached.") diff --git a/comfy/ops.py b/comfy/ops.py index 0f4eca7c7..33803b223 100644 --- a/comfy/ops.py +++ b/comfy/ops.py @@ -87,7 +87,7 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu signature = comfy_aimdo.model_vbar.vbar_fault(s._v) if signature is not None: - xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device) + xfer_dest = s._v_tensor resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature) if not resident: @@ -169,8 +169,8 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu if orig.dtype == dtype and len(fns) == 0: #The layer actually wants our freshly saved QT x = y - else: - y = x + elif update_weight: + y = comfy.float.stochastic_rounding(x, orig.dtype, seed = comfy.utils.string_to_seed(s.seed_key)) if update_weight: orig.copy_(y) for f in fns: diff --git a/comfy/sd.py b/comfy/sd.py index bc63d6ced..f65e7cadd 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -793,8 +793,6 @@ class VAE: self.first_stage_model = AutoencoderKL(**(config['params'])) self.first_stage_model = self.first_stage_model.eval() - model_management.archive_model_dtypes(self.first_stage_model) - if device is None: device = model_management.vae_device() self.device = device @@ -803,6 +801,7 @@ class VAE: dtype = model_management.vae_dtype(self.device, self.working_dtypes) self.vae_dtype = dtype self.first_stage_model.to(self.vae_dtype) + model_management.archive_model_dtypes(self.first_stage_model) self.output_device = model_management.intermediate_device() mp = comfy.model_patcher.CoreModelPatcher @@ -976,7 +975,7 @@ class VAE: if overlap is not None: args["overlap"] = overlap - if dims == 1: + if dims == 1 or self.extra_1d_channel is not None: args.pop("tile_y") output = self.decode_tiled_1d(samples, **args) elif dims == 2: diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 77264ed28..d33db7507 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -993,7 +993,7 @@ class CosmosT2IPredict2(supported_models_base.BASE): memory_usage_factor = 1.0 - supported_inference_dtypes = [torch.bfloat16, torch.float32] + supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] def __init__(self, unet_config): super().__init__(unet_config) @@ -1023,11 +1023,7 @@ class Anima(supported_models_base.BASE): memory_usage_factor = 1.0 - supported_inference_dtypes = [torch.bfloat16, torch.float32] - - def __init__(self, unet_config): - super().__init__(unet_config) - self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.95 + supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] def get_model(self, state_dict, prefix="", device=None): out = model_base.Anima(self, device=device) @@ -1038,6 +1034,12 @@ class Anima(supported_models_base.BASE): detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_06b.transformer.".format(pref)) return supported_models_base.ClipTarget(comfy.text_encoders.anima.AnimaTokenizer, comfy.text_encoders.anima.te(**detect)) + def set_inference_dtype(self, dtype, manual_cast_dtype, **kwargs): + self.memory_usage_factor = (self.unet_config.get("model_channels", 2048) / 2048) * 0.95 + if dtype is torch.float16: + self.memory_usage_factor *= 1.4 + return super().set_inference_dtype(dtype, manual_cast_dtype, **kwargs) + class CosmosI2VPredict2(CosmosT2IPredict2): unet_config = { "image_model": "cosmos_predict2", diff --git a/comfy/text_encoders/ace15.py b/comfy/text_encoders/ace15.py index 74e62733e..73697b3c1 100644 --- a/comfy/text_encoders/ace15.py +++ b/comfy/text_encoders/ace15.py @@ -3,6 +3,8 @@ import comfy.text_encoders.llama from comfy import sd1_clip import torch import math +from tqdm.auto import trange +import yaml import comfy.utils @@ -22,6 +24,8 @@ def sample_manual_loop_no_classes( audio_end_id: int = 215669, eos_token_id: int = 151645, ): + if ids is None: + return [] device = model.execution_device if execution_dtype is None: @@ -31,6 +35,7 @@ def sample_manual_loop_no_classes( execution_dtype = torch.float32 embeds, attention_mask, num_tokens, embeds_info = model.process_tokens(ids, device) + embeds_batch = embeds.shape[0] for i, t in enumerate(paddings): attention_mask[i, :t] = 0 attention_mask[i, t:] = 1 @@ -40,22 +45,27 @@ def sample_manual_loop_no_classes( generator = torch.Generator(device=device) generator.manual_seed(seed) model_config = model.transformer.model.config + past_kv_shape = [embeds_batch, model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim] for x in range(model_config.num_hidden_layers): - past_key_values.append((torch.empty([embeds.shape[0], model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim], device=device, dtype=execution_dtype), torch.empty([embeds.shape[0], model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim], device=device, dtype=execution_dtype), 0)) + past_key_values.append((torch.empty(past_kv_shape, device=device, dtype=execution_dtype), torch.empty(past_kv_shape, device=device, dtype=execution_dtype), 0)) progress_bar = comfy.utils.ProgressBar(max_new_tokens) - for step in range(max_new_tokens): + for step in trange(max_new_tokens, desc="LM sampling"): outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values) next_token_logits = model.transformer.logits(outputs[0])[:, -1] past_key_values = outputs[2] - cond_logits = next_token_logits[0:1] - uncond_logits = next_token_logits[1:2] - cfg_logits = uncond_logits + cfg_scale * (cond_logits - uncond_logits) + if cfg_scale != 1.0: + cond_logits = next_token_logits[0:1] + uncond_logits = next_token_logits[1:2] + cfg_logits = uncond_logits + cfg_scale * (cond_logits - uncond_logits) + else: + cfg_logits = next_token_logits[0:1] - if eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step: + use_eos_score = eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step + if use_eos_score: eos_score = cfg_logits[:, eos_token_id].clone() remove_logit_value = torch.finfo(cfg_logits.dtype).min @@ -63,7 +73,7 @@ def sample_manual_loop_no_classes( cfg_logits[:, :audio_start_id] = remove_logit_value cfg_logits[:, audio_end_id:] = remove_logit_value - if eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step: + if use_eos_score: cfg_logits[:, eos_token_id] = eos_score if top_k is not None and top_k > 0: @@ -92,8 +102,8 @@ def sample_manual_loop_no_classes( break embed, _, _, _ = model.process_tokens([[token]], device) - embeds = embed.repeat(2, 1, 1) - attention_mask = torch.cat([attention_mask, torch.ones((2, 1), device=device, dtype=attention_mask.dtype)], dim=1) + embeds = embed.repeat(embeds_batch, 1, 1) + attention_mask = torch.cat([attention_mask, torch.ones((embeds_batch, 1), device=device, dtype=attention_mask.dtype)], dim=1) output_audio_codes.append(token - audio_start_id) progress_bar.update_absolute(step) @@ -103,36 +113,79 @@ def sample_manual_loop_no_classes( def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0): positive = [[token for token, _ in inner_list] for inner_list in positive] - negative = [[token for token, _ in inner_list] for inner_list in negative] positive = positive[0] - negative = negative[0] - neg_pad = 0 - if len(negative) < len(positive): - neg_pad = (len(positive) - len(negative)) - negative = [model.special_tokens["pad"]] * neg_pad + negative + if cfg_scale != 1.0: + negative = [[token for token, _ in inner_list] for inner_list in negative] + negative = negative[0] - pos_pad = 0 - if len(negative) > len(positive): - pos_pad = (len(negative) - len(positive)) - positive = [model.special_tokens["pad"]] * pos_pad + positive + neg_pad = 0 + if len(negative) < len(positive): + neg_pad = (len(positive) - len(negative)) + negative = [model.special_tokens["pad"]] * neg_pad + negative - paddings = [pos_pad, neg_pad] - return sample_manual_loop_no_classes(model, [positive, negative], paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens) + pos_pad = 0 + if len(negative) > len(positive): + pos_pad = (len(negative) - len(positive)) + positive = [model.special_tokens["pad"]] * pos_pad + positive + + paddings = [pos_pad, neg_pad] + ids = [positive, negative] + else: + paddings = [] + ids = [positive] + + return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens) class ACE15Tokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_06b", tokenizer=Qwen3Tokenizer) + def _metas_to_cot(self, *, return_yaml: bool = False, **kwargs) -> str: + user_metas = { + k: kwargs.pop(k) + for k in ("bpm", "duration", "keyscale", "timesignature") + if k in kwargs + } + timesignature = user_metas.get("timesignature") + if isinstance(timesignature, str) and timesignature.endswith("/4"): + user_metas["timesignature"] = timesignature[:-2] + user_metas = { + k: v if not isinstance(v, str) or not v.isdigit() else int(v) + for k, v in user_metas.items() + if v not in {"unspecified", None} + } + if len(user_metas): + meta_yaml = yaml.dump(user_metas, allow_unicode=True, sort_keys=True).strip() + else: + meta_yaml = "" + return f"\n{meta_yaml}\n" if not return_yaml else meta_yaml + + def _metas_to_cap(self, **kwargs) -> str: + use_keys = ("bpm", "timesignature", "keyscale", "duration") + user_metas = { k: kwargs.pop(k, "N/A") for k in use_keys } + timesignature = user_metas.get("timesignature") + if isinstance(timesignature, str) and timesignature.endswith("/4"): + user_metas["timesignature"] = timesignature[:-2] + duration = user_metas["duration"] + if duration == "N/A": + user_metas["duration"] = "30 seconds" + elif isinstance(duration, (str, int, float)): + user_metas["duration"] = f"{math.ceil(float(duration))} seconds" + else: + raise TypeError("Unexpected type for duration key, must be str, int or float") + return "\n".join(f"- {k}: {user_metas[k]}" for k in use_keys) + def tokenize_with_weights(self, text, return_word_ids=False, **kwargs): - out = {} + text = text.strip() + text_negative = kwargs.get("caption_negative", text).strip() lyrics = kwargs.get("lyrics", "") - bpm = kwargs.get("bpm", 120) + lyrics_negative = kwargs.get("lyrics_negative", lyrics) duration = kwargs.get("duration", 120) - keyscale = kwargs.get("keyscale", "C major") - timesignature = kwargs.get("timesignature", 2) - language = kwargs.get("language", "en") + if isinstance(duration, str): + duration = float(duration.split(None, 1)[0]) + language = kwargs.get("language") seed = kwargs.get("seed", 0) generate_audio_codes = kwargs.get("generate_audio_codes", True) @@ -142,16 +195,45 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer): top_k = kwargs.get("top_k", 0.0) duration = math.ceil(duration) - meta_lm = 'bpm: {}\nduration: {}\nkeyscale: {}\ntimesignature: {}'.format(bpm, duration, keyscale, timesignature) - lm_template = "<|im_start|>system\n# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n<|im_end|>\n<|im_start|>user\n# Caption\n{}\n{}\n<|im_end|>\n<|im_start|>assistant\n\n{}\n\n\n<|im_end|>\n" + kwargs["duration"] = duration + tokens_duration = duration * 5 + min_tokens = int(kwargs.get("min_tokens", tokens_duration)) + max_tokens = int(kwargs.get("max_tokens", tokens_duration)) - meta_cap = '- bpm: {}\n- timesignature: {}\n- keyscale: {}\n- duration: {}\n'.format(bpm, timesignature, keyscale, duration) - out["lm_prompt"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, meta_lm), disable_weights=True) - out["lm_prompt_negative"] = self.qwen3_06b.tokenize_with_weights(lm_template.format(text, lyrics, ""), disable_weights=True) + metas_negative = { + k.rsplit("_", 1)[0]: kwargs.pop(k) + for k in ("bpm_negative", "duration_negative", "keyscale_negative", "timesignature_negative", "language_negative", "caption_negative") + if k in kwargs + } + if not kwargs.get("use_negative_caption"): + _ = metas_negative.pop("caption", None) - out["lyrics"] = self.qwen3_06b.tokenize_with_weights("# Languages\n{}\n\n# Lyric{}<|endoftext|><|endoftext|>".format(language, lyrics), return_word_ids, disable_weights=True, **kwargs) - out["qwen3_06b"] = self.qwen3_06b.tokenize_with_weights("# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n# Caption\n{}# Metas\n{}<|endoftext|>\n<|endoftext|>".format(text, meta_cap), return_word_ids, **kwargs) - out["lm_metadata"] = {"min_tokens": duration * 5, + cot_text = self._metas_to_cot(caption=text, **kwargs) + cot_text_negative = "\n\n" if not metas_negative else self._metas_to_cot(**metas_negative) + meta_cap = self._metas_to_cap(**kwargs) + + lm_template = "<|im_start|>system\n# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n<|im_end|>\n<|im_start|>user\n# Caption\n{}\n\n# Lyric\n{}\n<|im_end|>\n<|im_start|>assistant\n{}\n\n<|im_end|>\n" + lyrics_template = "# Languages\n{}\n\n# Lyric\n{}<|endoftext|><|endoftext|>" + qwen3_06b_template = "# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n# Caption\n{}\n\n# Metas\n{}\n<|endoftext|>\n<|endoftext|>" + + llm_prompts = { + "lm_prompt": lm_template.format(text, lyrics.strip(), cot_text), + "lm_prompt_negative": lm_template.format(text_negative, lyrics_negative.strip(), cot_text_negative), + "lyrics": lyrics_template.format(language if language is not None else "", lyrics), + "qwen3_06b": qwen3_06b_template.format(text, meta_cap), + } + + out = { + prompt_key: self.qwen3_06b.tokenize_with_weights( + prompt, + prompt_key == "qwen3_06b" and return_word_ids, + disable_weights = True, + **kwargs, + ) + for prompt_key, prompt in llm_prompts.items() + } + out["lm_metadata"] = {"min_tokens": min_tokens, + "max_tokens": max_tokens, "seed": seed, "generate_audio_codes": generate_audio_codes, "cfg_scale": cfg_scale, @@ -218,7 +300,7 @@ class ACE15TEModel(torch.nn.Module): lm_metadata = token_weight_pairs["lm_metadata"] if lm_metadata["generate_audio_codes"]: - audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"]) + audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["max_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"]) out["audio_codes"] = [audio_codes] return base_out, None, out diff --git a/comfy/text_encoders/anima.py b/comfy/text_encoders/anima.py index b6f58cb25..d8c5a6f92 100644 --- a/comfy/text_encoders/anima.py +++ b/comfy/text_encoders/anima.py @@ -23,7 +23,7 @@ class AnimaTokenizer: def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs): out = {} qwen_ids = self.qwen3_06b.tokenize_with_weights(text, return_word_ids, **kwargs) - out["qwen3_06b"] = [[(token, 1.0) for token, _ in inner_list] for inner_list in qwen_ids] # Set weights to 1.0 + out["qwen3_06b"] = [[(k[0], 1.0, k[2]) if return_word_ids else (k[0], 1.0) for k in inner_list] for inner_list in qwen_ids] # Set weights to 1.0 out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs) return out diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index 26573fb12..3f87dfd6a 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -25,7 +25,7 @@ def ltxv_te(*args, **kwargs): class Gemma3_12BTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer = tokenizer_data.get("spiece_model", None) - super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data) + super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, disable_weights=True, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data) def state_dict(self): return {"spiece_model": self.tokenizer.serialize_model()} diff --git a/comfy/utils.py b/comfy/utils.py index 1337e2205..edd80cebe 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -1376,3 +1376,21 @@ def string_to_seed(data): else: crc >>= 1 return crc ^ 0xFFFFFFFF + +def deepcopy_list_dict(obj, memo=None): + if memo is None: + memo = {} + + obj_id = id(obj) + if obj_id in memo: + return memo[obj_id] + + if isinstance(obj, dict): + res = {deepcopy_list_dict(k, memo): deepcopy_list_dict(v, memo) for k, v in obj.items()} + elif isinstance(obj, list): + res = [deepcopy_list_dict(i, memo) for i in obj] + else: + res = obj + + memo[obj_id] = res + return res diff --git a/comfy_api/latest/_input/video_types.py b/comfy_api/latest/_input/video_types.py index e634a0311..451e9526e 100644 --- a/comfy_api/latest/_input/video_types.py +++ b/comfy_api/latest/_input/video_types.py @@ -34,6 +34,21 @@ class VideoInput(ABC): """ pass + @abstractmethod + def as_trimmed( + self, + start_time: float | None = None, + duration: float | None = None, + strict_duration: bool = False, + ) -> VideoInput | None: + """ + Create a new VideoInput which is trimmed to have the corresponding start_time and duration + + Returns: + A new VideoInput, or None if the result would have negative duration + """ + pass + def get_stream_source(self) -> Union[str, io.BytesIO]: """ Get a streamable source for the video. This allows processing without diff --git a/comfy_api/latest/_input_impl/video_types.py b/comfy_api/latest/_input_impl/video_types.py index 1405d0b81..3463ed1c9 100644 --- a/comfy_api/latest/_input_impl/video_types.py +++ b/comfy_api/latest/_input_impl/video_types.py @@ -6,6 +6,7 @@ from typing import Optional from .._input import AudioInput, VideoInput import av import io +import itertools import json import numpy as np import math @@ -29,7 +30,6 @@ def container_to_output_format(container_format: str | None) -> str | None: formats = container_format.split(",") return formats[0] - def get_open_write_kwargs( dest: str | io.BytesIO, container_format: str, to_format: str | None ) -> dict: @@ -57,12 +57,14 @@ class VideoFromFile(VideoInput): Class representing video input from a file. """ - def __init__(self, file: str | io.BytesIO): + def __init__(self, file: str | io.BytesIO, *, start_time: float=0, duration: float=0): """ Initialize the VideoFromFile object based off of either a path on disk or a BytesIO object containing the file contents. """ self.__file = file + self.__start_time = start_time + self.__duration = duration def get_stream_source(self) -> str | io.BytesIO: """ @@ -96,6 +98,16 @@ class VideoFromFile(VideoInput): Returns: Duration in seconds """ + raw_duration = self._get_raw_duration() + if self.__start_time < 0: + duration_from_start = min(raw_duration, -self.__start_time) + else: + duration_from_start = raw_duration - self.__start_time + if self.__duration: + return min(self.__duration, duration_from_start) + return duration_from_start + + def _get_raw_duration(self) -> float: if isinstance(self.__file, io.BytesIO): self.__file.seek(0) with av.open(self.__file, mode="r") as container: @@ -113,9 +125,13 @@ class VideoFromFile(VideoInput): if video_stream and video_stream.average_rate: frame_count = 0 container.seek(0) - for packet in container.demux(video_stream): - for _ in packet.decode(): - frame_count += 1 + frame_iterator = ( + container.decode(video_stream) + if video_stream.codec.capabilities & 0x100 + else container.demux(video_stream) + ) + for packet in frame_iterator: + frame_count += 1 if frame_count > 0: return float(frame_count / video_stream.average_rate) @@ -131,36 +147,54 @@ class VideoFromFile(VideoInput): with av.open(self.__file, mode="r") as container: video_stream = self._get_first_video_stream(container) - # 1. Prefer the frames field if available - if video_stream.frames and video_stream.frames > 0: + # 1. Prefer the frames field if available and usable + if ( + video_stream.frames + and video_stream.frames > 0 + and not self.__start_time + and not self.__duration + ): return int(video_stream.frames) # 2. Try to estimate from duration and average_rate using only metadata - if container.duration is not None and video_stream.average_rate: - duration_seconds = float(container.duration / av.time_base) - estimated_frames = int(round(duration_seconds * float(video_stream.average_rate))) - if estimated_frames > 0: - return estimated_frames - if ( getattr(video_stream, "duration", None) is not None and getattr(video_stream, "time_base", None) is not None and video_stream.average_rate ): - duration_seconds = float(video_stream.duration * video_stream.time_base) + raw_duration = float(video_stream.duration * video_stream.time_base) + if self.__start_time < 0: + duration_from_start = min(raw_duration, -self.__start_time) + else: + duration_from_start = raw_duration - self.__start_time + duration_seconds = min(self.__duration, duration_from_start) estimated_frames = int(round(duration_seconds * float(video_stream.average_rate))) if estimated_frames > 0: return estimated_frames # 3. Last resort: decode frames and count them (streaming) - frame_count = 0 - container.seek(0) - for packet in container.demux(video_stream): - for _ in packet.decode(): - frame_count += 1 - - if frame_count == 0: - raise ValueError(f"Could not determine frame count for file '{self.__file}'") + if self.__start_time < 0: + start_time = max(self._get_raw_duration() + self.__start_time, 0) + else: + start_time = self.__start_time + frame_count = 1 + start_pts = int(start_time / video_stream.time_base) + end_pts = int((start_time + self.__duration) / video_stream.time_base) + container.seek(start_pts, stream=video_stream) + frame_iterator = ( + container.decode(video_stream) + if video_stream.codec.capabilities & 0x100 + else container.demux(video_stream) + ) + for frame in frame_iterator: + if frame.pts >= start_pts: + break + else: + raise ValueError(f"Could not determine frame count for file '{self.__file}'\nNo frames exist for start_time {self.__start_time}") + for frame in frame_iterator: + if frame.pts >= end_pts: + break + frame_count += 1 return frame_count def get_frame_rate(self) -> Fraction: @@ -199,9 +233,21 @@ class VideoFromFile(VideoInput): return container.format.name def get_components_internal(self, container: InputContainer) -> VideoComponents: + video_stream = self._get_first_video_stream(container) + if self.__start_time < 0: + start_time = max(self._get_raw_duration() + self.__start_time, 0) + else: + start_time = self.__start_time # Get video frames frames = [] - for frame in container.decode(video=0): + start_pts = int(start_time / video_stream.time_base) + end_pts = int((start_time + self.__duration) / video_stream.time_base) + container.seek(start_pts, stream=video_stream) + for frame in container.decode(video_stream): + if frame.pts < start_pts: + continue + if self.__duration and frame.pts >= end_pts: + break img = frame.to_ndarray(format='rgb24') # shape: (H, W, 3) img = torch.from_numpy(img) / 255.0 # shape: (H, W, 3) frames.append(img) @@ -209,31 +255,44 @@ class VideoFromFile(VideoInput): images = torch.stack(frames) if len(frames) > 0 else torch.zeros(0, 3, 0, 0) # Get frame rate - video_stream = next(s for s in container.streams if s.type == 'video') - frame_rate = Fraction(video_stream.average_rate) if video_stream and video_stream.average_rate else Fraction(1) + frame_rate = Fraction(video_stream.average_rate) if video_stream.average_rate else Fraction(1) # Get audio if available audio = None - try: - container.seek(0) # Reset the container to the beginning - for stream in container.streams: - if stream.type != 'audio': - continue - assert isinstance(stream, av.AudioStream) - audio_frames = [] - for packet in container.demux(stream): - for frame in packet.decode(): - assert isinstance(frame, av.AudioFrame) - audio_frames.append(frame.to_ndarray()) # shape: (channels, samples) - if len(audio_frames) > 0: - audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples) - audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples) - audio = AudioInput({ - "waveform": audio_tensor, - "sample_rate": int(stream.sample_rate) if stream.sample_rate else 1, - }) - except StopIteration: - pass # No audio stream + container.seek(start_pts, stream=video_stream) + # Use last stream for consistency + if len(container.streams.audio): + audio_stream = container.streams.audio[-1] + audio_frames = [] + resample = av.audio.resampler.AudioResampler(format='fltp').resample + frames = itertools.chain.from_iterable( + map(resample, container.decode(audio_stream)) + ) + + has_first_frame = False + for frame in frames: + offset_seconds = start_time - frame.pts * audio_stream.time_base + to_skip = int(offset_seconds * audio_stream.sample_rate) + if to_skip < frame.samples: + has_first_frame = True + break + if has_first_frame: + audio_frames.append(frame.to_ndarray()[..., to_skip:]) + + for frame in frames: + if frame.time > start_time + self.__duration: + break + audio_frames.append(frame.to_ndarray()) # shape: (channels, samples) + if len(audio_frames) > 0: + audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples) + if self.__duration: + audio_data = audio_data[..., :int(self.__duration * audio_stream.sample_rate)] + + audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples) + audio = AudioInput({ + "waveform": audio_tensor, + "sample_rate": int(audio_stream.sample_rate) if audio_stream.sample_rate else 1, + }) metadata = container.metadata return VideoComponents(images=images, audio=audio, frame_rate=frame_rate, metadata=metadata) @@ -250,7 +309,7 @@ class VideoFromFile(VideoInput): path: str | io.BytesIO, format: VideoContainer = VideoContainer.AUTO, codec: VideoCodec = VideoCodec.AUTO, - metadata: Optional[dict] = None + metadata: Optional[dict] = None, ): if isinstance(self.__file, io.BytesIO): self.__file.seek(0) # Reset the BytesIO object to the beginning @@ -262,15 +321,14 @@ class VideoFromFile(VideoInput): reuse_streams = False if codec != VideoCodec.AUTO and codec != video_encoding and video_encoding is not None: reuse_streams = False + if self.__start_time or self.__duration: + reuse_streams = False if not reuse_streams: components = self.get_components_internal(container) video = VideoFromComponents(components) return video.save_to( - path, - format=format, - codec=codec, - metadata=metadata + path, format=format, codec=codec, metadata=metadata ) streams = container.streams @@ -304,10 +362,21 @@ class VideoFromFile(VideoInput): output_container.mux(packet) def _get_first_video_stream(self, container: InputContainer): - video_stream = next((s for s in container.streams if s.type == "video"), None) - if video_stream is None: - raise ValueError(f"No video stream found in file '{self.__file}'") - return video_stream + if len(container.streams.video): + return container.streams.video[0] + raise ValueError(f"No video stream found in file '{self.__file}'") + + def as_trimmed( + self, start_time: float = 0, duration: float = 0, strict_duration: bool = True + ) -> VideoInput | None: + trimmed = VideoFromFile( + self.get_stream_source(), + start_time=start_time + self.__start_time, + duration=duration, + ) + if trimmed.get_duration() < duration and strict_duration: + return None + return trimmed class VideoFromComponents(VideoInput): @@ -322,7 +391,7 @@ class VideoFromComponents(VideoInput): return VideoComponents( images=self.__components.images, audio=self.__components.audio, - frame_rate=self.__components.frame_rate + frame_rate=self.__components.frame_rate, ) def save_to( @@ -330,7 +399,7 @@ class VideoFromComponents(VideoInput): path: str, format: VideoContainer = VideoContainer.AUTO, codec: VideoCodec = VideoCodec.AUTO, - metadata: Optional[dict] = None + metadata: Optional[dict] = None, ): if format != VideoContainer.AUTO and format != VideoContainer.MP4: raise ValueError("Only MP4 format is supported for now") @@ -357,7 +426,10 @@ class VideoFromComponents(VideoInput): audio_stream: Optional[av.AudioStream] = None if self.__components.audio: audio_sample_rate = int(self.__components.audio['sample_rate']) - audio_stream = output.add_stream('aac', rate=audio_sample_rate) + waveform = self.__components.audio['waveform'] + waveform = waveform[0, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])] + layout = {1: 'mono', 2: 'stereo', 6: '5.1'}.get(waveform.shape[0], 'stereo') + audio_stream = output.add_stream('aac', rate=audio_sample_rate, layout=layout) # Encode video for i, frame in enumerate(self.__components.images): @@ -372,12 +444,21 @@ class VideoFromComponents(VideoInput): output.mux(packet) if audio_stream and self.__components.audio: - waveform = self.__components.audio['waveform'] - waveform = waveform[:, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])] - frame = av.AudioFrame.from_ndarray(waveform.movedim(2, 1).reshape(1, -1).float().cpu().numpy(), format='flt', layout='mono' if waveform.shape[1] == 1 else 'stereo') + frame = av.AudioFrame.from_ndarray(waveform.float().cpu().numpy(), format='fltp', layout=layout) frame.sample_rate = audio_sample_rate frame.pts = 0 output.mux(audio_stream.encode(frame)) # Flush encoder output.mux(audio_stream.encode(None)) + + def as_trimmed( + self, + start_time: float | None = None, + duration: float | None = None, + strict_duration: bool = True, + ) -> VideoInput | None: + if self.get_duration() < start_time + duration: + return None + #TODO Consider tracking duration and trimming at time of save? + return VideoFromFile(self.get_stream_source(), start_time=start_time, duration=duration) diff --git a/comfy_api_nodes/apis/__init__.py b/comfy_api_nodes/apis/__init__.py index ee2aa1ce6..46a583b5e 100644 --- a/comfy_api_nodes/apis/__init__.py +++ b/comfy_api_nodes/apis/__init__.py @@ -1197,12 +1197,6 @@ class KlingImageGenImageReferenceType(str, Enum): face = 'face' -class KlingImageGenModelName(str, Enum): - kling_v1 = 'kling-v1' - kling_v1_5 = 'kling-v1-5' - kling_v2 = 'kling-v2' - - class KlingImageGenerationsRequest(BaseModel): aspect_ratio: Optional[KlingImageGenAspectRatio] = '16:9' callback_url: Optional[AnyUrl] = Field( @@ -1218,7 +1212,7 @@ class KlingImageGenerationsRequest(BaseModel): 0.5, description='Reference intensity for user-uploaded images', ge=0.0, le=1.0 ) image_reference: Optional[KlingImageGenImageReferenceType] = None - model_name: Optional[KlingImageGenModelName] = 'kling-v1' + model_name: str = Field(...) n: Optional[int] = Field(1, description='Number of generated images', ge=1, le=9) negative_prompt: Optional[str] = Field( None, description='Negative text prompt', max_length=200 diff --git a/comfy_api_nodes/apis/kling.py b/comfy_api_nodes/apis/kling.py index bf54ede3e..9c0446075 100644 --- a/comfy_api_nodes/apis/kling.py +++ b/comfy_api_nodes/apis/kling.py @@ -1,12 +1,22 @@ from pydantic import BaseModel, Field +class MultiPromptEntry(BaseModel): + index: int = Field(...) + prompt: str = Field(...) + duration: str = Field(...) + + class OmniProText2VideoRequest(BaseModel): model_name: str = Field(..., description="kling-video-o1") aspect_ratio: str = Field(..., description="'16:9', '9:16' or '1:1'") duration: str = Field(..., description="'5' or '10'") prompt: str = Field(...) mode: str = Field("pro") + multi_shot: bool | None = Field(None) + multi_prompt: list[MultiPromptEntry] | None = Field(None) + shot_type: str | None = Field(None) + sound: str = Field(..., description="'on' or 'off'") class OmniParamImage(BaseModel): @@ -26,6 +36,10 @@ class OmniProFirstLastFrameRequest(BaseModel): duration: str = Field(..., description="'5' or '10'") prompt: str = Field(...) mode: str = Field("pro") + sound: str | None = Field(None, description="'on' or 'off'") + multi_shot: bool | None = Field(None) + multi_prompt: list[MultiPromptEntry] | None = Field(None) + shot_type: str | None = Field(None) class OmniProReferences2VideoRequest(BaseModel): @@ -38,6 +52,10 @@ class OmniProReferences2VideoRequest(BaseModel): duration: str | None = Field(..., description="From 3 to 10.") prompt: str = Field(...) mode: str = Field("pro") + sound: str | None = Field(None, description="'on' or 'off'") + multi_shot: bool | None = Field(None) + multi_prompt: list[MultiPromptEntry] | None = Field(None) + shot_type: str | None = Field(None) class TaskStatusVideoResult(BaseModel): @@ -54,6 +72,7 @@ class TaskStatusImageResult(BaseModel): class TaskStatusResults(BaseModel): videos: list[TaskStatusVideoResult] | None = Field(None) images: list[TaskStatusImageResult] | None = Field(None) + series_images: list[TaskStatusImageResult] | None = Field(None) class TaskStatusResponseData(BaseModel): @@ -77,31 +96,42 @@ class OmniImageParamImage(BaseModel): class OmniProImageRequest(BaseModel): - model_name: str = Field(..., description="kling-image-o1") - resolution: str = Field(..., description="'1k' or '2k'") + model_name: str = Field(...) + resolution: str = Field(...) aspect_ratio: str | None = Field(...) prompt: str = Field(...) mode: str = Field("pro") n: int | None = Field(1, le=9) image_list: list[OmniImageParamImage] | None = Field(..., max_length=10) + result_type: str | None = Field(None, description="Set to 'series' for series generation") + series_amount: int | None = Field(None, ge=2, le=9, description="Number of images in a series") class TextToVideoWithAudioRequest(BaseModel): - model_name: str = Field(..., description="kling-v2-6") + model_name: str = Field(...) aspect_ratio: str = Field(..., description="'16:9', '9:16' or '1:1'") - duration: str = Field(..., description="'5' or '10'") - prompt: str = Field(...) + duration: str = Field(...) + prompt: str | None = Field(...) + negative_prompt: str | None = Field(None) mode: str = Field("pro") sound: str = Field(..., description="'on' or 'off'") + multi_shot: bool | None = Field(None) + multi_prompt: list[MultiPromptEntry] | None = Field(None) + shot_type: str | None = Field(None) class ImageToVideoWithAudioRequest(BaseModel): - model_name: str = Field(..., description="kling-v2-6") + model_name: str = Field(...) image: str = Field(...) - duration: str = Field(..., description="'5' or '10'") - prompt: str = Field(...) + image_tail: str | None = Field(None) + duration: str = Field(...) + prompt: str | None = Field(...) + negative_prompt: str | None = Field(None) mode: str = Field("pro") sound: str = Field(..., description="'on' or 'off'") + multi_shot: bool | None = Field(None) + multi_prompt: list[MultiPromptEntry] | None = Field(None) + shot_type: str | None = Field(None) class MotionControlRequest(BaseModel): diff --git a/comfy_api_nodes/nodes_kling.py b/comfy_api_nodes/nodes_kling.py index 739fe1855..b89c85561 100644 --- a/comfy_api_nodes/nodes_kling.py +++ b/comfy_api_nodes/nodes_kling.py @@ -38,7 +38,6 @@ from comfy_api_nodes.apis import ( KlingImageGenerationsRequest, KlingImageGenerationsResponse, KlingImageGenImageReferenceType, - KlingImageGenModelName, KlingImageGenAspectRatio, KlingVideoEffectsRequest, KlingVideoEffectsResponse, @@ -52,6 +51,7 @@ from comfy_api_nodes.apis import ( from comfy_api_nodes.apis.kling import ( ImageToVideoWithAudioRequest, MotionControlRequest, + MultiPromptEntry, OmniImageParamImage, OmniParamImage, OmniParamVideo, @@ -71,6 +71,7 @@ from comfy_api_nodes.util import ( sync_op, tensor_to_base64_string, upload_audio_to_comfyapi, + upload_image_to_comfyapi, upload_images_to_comfyapi, upload_video_to_comfyapi, validate_image_aspect_ratio, @@ -80,6 +81,31 @@ from comfy_api_nodes.util import ( validate_video_duration, ) + +def _generate_storyboard_inputs(count: int) -> list: + inputs = [] + for i in range(1, count + 1): + inputs.extend( + [ + IO.String.Input( + f"storyboard_{i}_prompt", + multiline=True, + default="", + tooltip=f"Prompt for storyboard segment {i}. Max 512 characters.", + ), + IO.Int.Input( + f"storyboard_{i}_duration", + default=4, + min=1, + max=15, + display_mode=IO.NumberDisplay.slider, + tooltip=f"Duration for storyboard segment {i} in seconds.", + ), + ] + ) + return inputs + + KLING_API_VERSION = "v1" PATH_TEXT_TO_VIDEO = f"/proxy/kling/{KLING_API_VERSION}/videos/text2video" PATH_IMAGE_TO_VIDEO = f"/proxy/kling/{KLING_API_VERSION}/videos/image2video" @@ -820,20 +846,48 @@ class OmniProTextToVideoNode(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingOmniProTextToVideoNode", - display_name="Kling Omni Text to Video (Pro)", + display_name="Kling 3.0 Omni Text to Video", category="api node/video/Kling", description="Use text prompts to generate videos with the latest Kling model.", inputs=[ - IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]), IO.String.Input( "prompt", multiline=True, tooltip="A text prompt describing the video content. " - "This can include both positive and negative descriptions.", + "This can include both positive and negative descriptions. " + "Ignored when storyboards are enabled.", ), IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), - IO.Combo.Input("duration", options=[5, 10]), + IO.Int.Input("duration", default=5, min=3, max=15, display_mode=IO.NumberDisplay.slider), IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), + IO.DynamicCombo.Input( + "storyboards", + options=[ + IO.DynamicCombo.Option("disabled", []), + IO.DynamicCombo.Option("1 storyboard", _generate_storyboard_inputs(1)), + IO.DynamicCombo.Option("2 storyboards", _generate_storyboard_inputs(2)), + IO.DynamicCombo.Option("3 storyboards", _generate_storyboard_inputs(3)), + IO.DynamicCombo.Option("4 storyboards", _generate_storyboard_inputs(4)), + IO.DynamicCombo.Option("5 storyboards", _generate_storyboard_inputs(5)), + IO.DynamicCombo.Option("6 storyboards", _generate_storyboard_inputs(6)), + ], + tooltip="Generate a series of video segments with individual prompts and durations. " + "Ignored for o1 model.", + optional=True, + ), + IO.Boolean.Input("generate_audio", default=False, optional=True), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + optional=True, + ), ], outputs=[ IO.Video.Output(), @@ -845,11 +899,15 @@ class OmniProTextToVideoNode(IO.ComfyNode): ], is_api_node=True, price_badge=IO.PriceBadge( - depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]), + depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution", "model_name", "generate_audio"]), expr=""" ( $mode := (widgets.resolution = "720p") ? "std" : "pro"; - $rates := {"std": 0.084, "pro": 0.112}; + $isV3 := $contains(widgets.model_name, "v3"); + $audio := $isV3 and widgets.generate_audio; + $rates := $audio + ? {"std": 0.112, "pro": 0.14} + : {"std": 0.084, "pro": 0.112}; {"type":"usd","usd": $lookup($rates, $mode) * widgets.duration} ) """, @@ -864,8 +922,45 @@ class OmniProTextToVideoNode(IO.ComfyNode): aspect_ratio: str, duration: int, resolution: str = "1080p", + storyboards: dict | None = None, + generate_audio: bool = False, + seed: int = 0, ) -> IO.NodeOutput: - validate_string(prompt, min_length=1, max_length=2500) + _ = seed + if model_name == "kling-video-o1": + if duration not in (5, 10): + raise ValueError("kling-video-o1 only supports durations of 5 or 10 seconds.") + if generate_audio: + raise ValueError("kling-video-o1 does not support audio generation.") + stories_enabled = storyboards is not None and storyboards["storyboards"] != "disabled" + if stories_enabled and model_name == "kling-video-o1": + raise ValueError("kling-video-o1 does not support storyboards.") + validate_string(prompt, strip_whitespace=True, min_length=0 if stories_enabled else 1, max_length=2500) + + multi_shot = None + multi_prompt_list = None + if stories_enabled: + count = int(storyboards["storyboards"].split()[0]) + multi_shot = True + multi_prompt_list = [] + for i in range(1, count + 1): + sb_prompt = storyboards[f"storyboard_{i}_prompt"] + sb_duration = storyboards[f"storyboard_{i}_duration"] + validate_string(sb_prompt, field_name=f"storyboard_{i}_prompt", min_length=1, max_length=512) + multi_prompt_list.append( + MultiPromptEntry( + index=i, + prompt=sb_prompt, + duration=str(sb_duration), + ) + ) + total_storyboard_duration = sum(int(e.duration) for e in multi_prompt_list) + if total_storyboard_duration != duration: + raise ValueError( + f"Total storyboard duration ({total_storyboard_duration}s) " + f"must equal the global duration ({duration}s)." + ) + response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/videos/omni-video", method="POST"), @@ -876,6 +971,10 @@ class OmniProTextToVideoNode(IO.ComfyNode): aspect_ratio=aspect_ratio, duration=str(duration), mode="pro" if resolution == "1080p" else "std", + multi_shot=multi_shot, + multi_prompt=multi_prompt_list, + shot_type="customize" if multi_shot else None, + sound="on" if generate_audio else "off", ), ) return await finish_omni_video_task(cls, response) @@ -887,24 +986,26 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingOmniProFirstLastFrameNode", - display_name="Kling Omni First-Last-Frame to Video (Pro)", + display_name="Kling 3.0 Omni First-Last-Frame to Video", category="api node/video/Kling", description="Use a start frame, an optional end frame, or reference images with the latest Kling model.", inputs=[ - IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]), IO.String.Input( "prompt", multiline=True, tooltip="A text prompt describing the video content. " - "This can include both positive and negative descriptions.", + "This can include both positive and negative descriptions. " + "Ignored when storyboards are enabled.", ), - IO.Int.Input("duration", default=5, min=3, max=10, display_mode=IO.NumberDisplay.slider), + IO.Int.Input("duration", default=5, min=3, max=15, display_mode=IO.NumberDisplay.slider), IO.Image.Input("first_frame"), IO.Image.Input( "end_frame", optional=True, tooltip="An optional end frame for the video. " - "This cannot be used simultaneously with 'reference_images'.", + "This cannot be used simultaneously with 'reference_images'. " + "Does not work with storyboards.", ), IO.Image.Input( "reference_images", @@ -912,6 +1013,38 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): tooltip="Up to 6 additional reference images.", ), IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), + IO.DynamicCombo.Input( + "storyboards", + options=[ + IO.DynamicCombo.Option("disabled", []), + IO.DynamicCombo.Option("1 storyboard", _generate_storyboard_inputs(1)), + IO.DynamicCombo.Option("2 storyboards", _generate_storyboard_inputs(2)), + IO.DynamicCombo.Option("3 storyboards", _generate_storyboard_inputs(3)), + IO.DynamicCombo.Option("4 storyboards", _generate_storyboard_inputs(4)), + IO.DynamicCombo.Option("5 storyboards", _generate_storyboard_inputs(5)), + IO.DynamicCombo.Option("6 storyboards", _generate_storyboard_inputs(6)), + ], + tooltip="Generate a series of video segments with individual prompts and durations. " + "Only supported for kling-v3-omni.", + optional=True, + ), + IO.Boolean.Input( + "generate_audio", + default=False, + optional=True, + tooltip="Generate audio for the video. Only supported for kling-v3-omni.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + optional=True, + ), ], outputs=[ IO.Video.Output(), @@ -923,11 +1056,15 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): ], is_api_node=True, price_badge=IO.PriceBadge( - depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]), + depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution", "model_name", "generate_audio"]), expr=""" ( $mode := (widgets.resolution = "720p") ? "std" : "pro"; - $rates := {"std": 0.084, "pro": 0.112}; + $isV3 := $contains(widgets.model_name, "v3"); + $audio := $isV3 and widgets.generate_audio; + $rates := $audio + ? {"std": 0.112, "pro": 0.14} + : {"std": 0.084, "pro": 0.112}; {"type":"usd","usd": $lookup($rates, $mode) * widgets.duration} ) """, @@ -944,15 +1081,59 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): end_frame: Input.Image | None = None, reference_images: Input.Image | None = None, resolution: str = "1080p", + storyboards: dict | None = None, + generate_audio: bool = False, + seed: int = 0, ) -> IO.NodeOutput: + _ = seed + if model_name == "kling-video-o1": + if duration > 10: + raise ValueError("kling-video-o1 does not support durations greater than 10 seconds.") + if generate_audio: + raise ValueError("kling-video-o1 does not support audio generation.") + stories_enabled = storyboards is not None and storyboards["storyboards"] != "disabled" + if stories_enabled and model_name == "kling-video-o1": + raise ValueError("kling-video-o1 does not support storyboards.") prompt = normalize_omni_prompt_references(prompt) - validate_string(prompt, min_length=1, max_length=2500) + validate_string(prompt, strip_whitespace=True, min_length=0 if stories_enabled else 1, max_length=2500) if end_frame is not None and reference_images is not None: raise ValueError("The 'end_frame' input cannot be used simultaneously with 'reference_images'.") - if duration not in (5, 10) and end_frame is None and reference_images is None: + if end_frame is not None and stories_enabled: + raise ValueError("The 'end_frame' input cannot be used simultaneously with storyboards.") + if ( + model_name == "kling-video-o1" + and duration not in (5, 10) + and end_frame is None + and reference_images is None + ): raise ValueError( "Duration is only supported for 5 or 10 seconds if there is no end frame or reference images." ) + + multi_shot = None + multi_prompt_list = None + if stories_enabled: + count = int(storyboards["storyboards"].split()[0]) + multi_shot = True + multi_prompt_list = [] + for i in range(1, count + 1): + sb_prompt = storyboards[f"storyboard_{i}_prompt"] + sb_duration = storyboards[f"storyboard_{i}_duration"] + validate_string(sb_prompt, field_name=f"storyboard_{i}_prompt", min_length=1, max_length=512) + multi_prompt_list.append( + MultiPromptEntry( + index=i, + prompt=sb_prompt, + duration=str(sb_duration), + ) + ) + total_storyboard_duration = sum(int(e.duration) for e in multi_prompt_list) + if total_storyboard_duration != duration: + raise ValueError( + f"Total storyboard duration ({total_storyboard_duration}s) " + f"must equal the global duration ({duration}s)." + ) + validate_image_dimensions(first_frame, min_width=300, min_height=300) validate_image_aspect_ratio(first_frame, (1, 2.5), (2.5, 1)) image_list: list[OmniParamImage] = [ @@ -988,6 +1169,10 @@ class OmniProFirstLastFrameNode(IO.ComfyNode): duration=str(duration), image_list=image_list, mode="pro" if resolution == "1080p" else "std", + sound="on" if generate_audio else "off", + multi_shot=multi_shot, + multi_prompt=multi_prompt_list, + shot_type="customize" if multi_shot else None, ), ) return await finish_omni_video_task(cls, response) @@ -999,24 +1184,57 @@ class OmniProImageToVideoNode(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingOmniProImageToVideoNode", - display_name="Kling Omni Image to Video (Pro)", + display_name="Kling 3.0 Omni Image to Video", category="api node/video/Kling", description="Use up to 7 reference images to generate a video with the latest Kling model.", inputs=[ - IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]), IO.String.Input( "prompt", multiline=True, tooltip="A text prompt describing the video content. " - "This can include both positive and negative descriptions.", + "This can include both positive and negative descriptions. " + "Ignored when storyboards are enabled.", ), IO.Combo.Input("aspect_ratio", options=["16:9", "9:16", "1:1"]), - IO.Int.Input("duration", default=3, min=3, max=10, display_mode=IO.NumberDisplay.slider), + IO.Int.Input("duration", default=5, min=3, max=15, display_mode=IO.NumberDisplay.slider), IO.Image.Input( "reference_images", tooltip="Up to 7 reference images.", ), IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), + IO.DynamicCombo.Input( + "storyboards", + options=[ + IO.DynamicCombo.Option("disabled", []), + IO.DynamicCombo.Option("1 storyboard", _generate_storyboard_inputs(1)), + IO.DynamicCombo.Option("2 storyboards", _generate_storyboard_inputs(2)), + IO.DynamicCombo.Option("3 storyboards", _generate_storyboard_inputs(3)), + IO.DynamicCombo.Option("4 storyboards", _generate_storyboard_inputs(4)), + IO.DynamicCombo.Option("5 storyboards", _generate_storyboard_inputs(5)), + IO.DynamicCombo.Option("6 storyboards", _generate_storyboard_inputs(6)), + ], + tooltip="Generate a series of video segments with individual prompts and durations. " + "Only supported for kling-v3-omni.", + optional=True, + ), + IO.Boolean.Input( + "generate_audio", + default=False, + optional=True, + tooltip="Generate audio for the video. Only supported for kling-v3-omni.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + optional=True, + ), ], outputs=[ IO.Video.Output(), @@ -1028,11 +1246,15 @@ class OmniProImageToVideoNode(IO.ComfyNode): ], is_api_node=True, price_badge=IO.PriceBadge( - depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution"]), + depends_on=IO.PriceBadgeDepends(widgets=["duration", "resolution", "model_name", "generate_audio"]), expr=""" ( $mode := (widgets.resolution = "720p") ? "std" : "pro"; - $rates := {"std": 0.084, "pro": 0.112}; + $isV3 := $contains(widgets.model_name, "v3"); + $audio := $isV3 and widgets.generate_audio; + $rates := $audio + ? {"std": 0.112, "pro": 0.14} + : {"std": 0.084, "pro": 0.112}; {"type":"usd","usd": $lookup($rates, $mode) * widgets.duration} ) """, @@ -1048,9 +1270,46 @@ class OmniProImageToVideoNode(IO.ComfyNode): duration: int, reference_images: Input.Image, resolution: str = "1080p", + storyboards: dict | None = None, + generate_audio: bool = False, + seed: int = 0, ) -> IO.NodeOutput: + _ = seed + if model_name == "kling-video-o1": + if duration > 10: + raise ValueError("kling-video-o1 does not support durations greater than 10 seconds.") + if generate_audio: + raise ValueError("kling-video-o1 does not support audio generation.") + stories_enabled = storyboards is not None and storyboards["storyboards"] != "disabled" + if stories_enabled and model_name == "kling-video-o1": + raise ValueError("kling-video-o1 does not support storyboards.") prompt = normalize_omni_prompt_references(prompt) - validate_string(prompt, min_length=1, max_length=2500) + validate_string(prompt, strip_whitespace=True, min_length=0 if stories_enabled else 1, max_length=2500) + + multi_shot = None + multi_prompt_list = None + if stories_enabled: + count = int(storyboards["storyboards"].split()[0]) + multi_shot = True + multi_prompt_list = [] + for i in range(1, count + 1): + sb_prompt = storyboards[f"storyboard_{i}_prompt"] + sb_duration = storyboards[f"storyboard_{i}_duration"] + validate_string(sb_prompt, field_name=f"storyboard_{i}_prompt", min_length=1, max_length=512) + multi_prompt_list.append( + MultiPromptEntry( + index=i, + prompt=sb_prompt, + duration=str(sb_duration), + ) + ) + total_storyboard_duration = sum(int(e.duration) for e in multi_prompt_list) + if total_storyboard_duration != duration: + raise ValueError( + f"Total storyboard duration ({total_storyboard_duration}s) " + f"must equal the global duration ({duration}s)." + ) + if get_number_of_images(reference_images) > 7: raise ValueError("The maximum number of reference images is 7.") for i in reference_images: @@ -1070,6 +1329,10 @@ class OmniProImageToVideoNode(IO.ComfyNode): duration=str(duration), image_list=image_list, mode="pro" if resolution == "1080p" else "std", + sound="on" if generate_audio else "off", + multi_shot=multi_shot, + multi_prompt=multi_prompt_list, + shot_type="customize" if multi_shot else None, ), ) return await finish_omni_video_task(cls, response) @@ -1081,11 +1344,11 @@ class OmniProVideoToVideoNode(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingOmniProVideoToVideoNode", - display_name="Kling Omni Video to Video (Pro)", + display_name="Kling 3.0 Omni Video to Video", category="api node/video/Kling", description="Use a video and up to 4 reference images to generate a video with the latest Kling model.", inputs=[ - IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]), IO.String.Input( "prompt", multiline=True, @@ -1102,6 +1365,17 @@ class OmniProVideoToVideoNode(IO.ComfyNode): optional=True, ), IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + optional=True, + ), ], outputs=[ IO.Video.Output(), @@ -1135,7 +1409,9 @@ class OmniProVideoToVideoNode(IO.ComfyNode): keep_original_sound: bool, reference_images: Input.Image | None = None, resolution: str = "1080p", + seed: int = 0, ) -> IO.NodeOutput: + _ = seed prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) validate_video_duration(reference_video, min_duration=3.0, max_duration=10.05) @@ -1179,11 +1455,11 @@ class OmniProEditVideoNode(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingOmniProEditVideoNode", - display_name="Kling Omni Edit Video (Pro)", + display_name="Kling 3.0 Omni Edit Video", category="api node/video/Kling", description="Edit an existing video with the latest model from Kling.", inputs=[ - IO.Combo.Input("model_name", options=["kling-video-o1"]), + IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]), IO.String.Input( "prompt", multiline=True, @@ -1198,6 +1474,17 @@ class OmniProEditVideoNode(IO.ComfyNode): optional=True, ), IO.Combo.Input("resolution", options=["1080p", "720p"], optional=True), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + optional=True, + ), ], outputs=[ IO.Video.Output(), @@ -1229,7 +1516,9 @@ class OmniProEditVideoNode(IO.ComfyNode): keep_original_sound: bool, reference_images: Input.Image | None = None, resolution: str = "1080p", + seed: int = 0, ) -> IO.NodeOutput: + _ = seed prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) validate_video_duration(video, min_duration=3.0, max_duration=10.05) @@ -1273,27 +1562,43 @@ class OmniProImageNode(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingOmniProImageNode", - display_name="Kling Omni Image (Pro)", + display_name="Kling 3.0 Omni Image", category="api node/image/Kling", description="Create or edit images with the latest model from Kling.", inputs=[ - IO.Combo.Input("model_name", options=["kling-image-o1"]), + IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-image-o1"]), IO.String.Input( "prompt", multiline=True, tooltip="A text prompt describing the image content. " "This can include both positive and negative descriptions.", ), - IO.Combo.Input("resolution", options=["1K", "2K"]), + IO.Combo.Input("resolution", options=["1K", "2K", "4K"]), IO.Combo.Input( "aspect_ratio", options=["16:9", "9:16", "1:1", "4:3", "3:4", "3:2", "2:3", "21:9"], ), + IO.Combo.Input( + "series_amount", + options=["disabled", "2", "3", "4", "5", "6", "7", "8", "9"], + tooltip="Generate a series of images. Not supported for kling-image-o1.", + ), IO.Image.Input( "reference_images", tooltip="Up to 10 additional reference images.", optional=True, ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + optional=True, + ), ], outputs=[ IO.Image.Output(), @@ -1305,7 +1610,16 @@ class OmniProImageNode(IO.ComfyNode): ], is_api_node=True, price_badge=IO.PriceBadge( - expr="""{"type":"usd","usd":0.028}""", + depends_on=IO.PriceBadgeDepends(widgets=["resolution", "series_amount", "model_name"]), + expr=""" + ( + $prices := {"1k": 0.028, "2k": 0.028, "4k": 0.056}; + $base := $lookup($prices, widgets.resolution); + $isO1 := widgets.model_name = "kling-image-o1"; + $mult := ($isO1 or widgets.series_amount = "disabled") ? 1 : $number(widgets.series_amount); + {"type":"usd","usd": $base * $mult} + ) + """, ), ) @@ -1316,8 +1630,13 @@ class OmniProImageNode(IO.ComfyNode): prompt: str, resolution: str, aspect_ratio: str, + series_amount: str = "disabled", reference_images: Input.Image | None = None, + seed: int = 0, ) -> IO.NodeOutput: + _ = seed + if model_name == "kling-image-o1" and resolution == "4K": + raise ValueError("4K resolution is not supported for kling-image-o1 model.") prompt = normalize_omni_prompt_references(prompt) validate_string(prompt, min_length=1, max_length=2500) image_list: list[OmniImageParamImage] = [] @@ -1329,6 +1648,9 @@ class OmniProImageNode(IO.ComfyNode): validate_image_aspect_ratio(i, (1, 2.5), (2.5, 1)) for i in await upload_images_to_comfyapi(cls, reference_images, wait_label="Uploading reference image"): image_list.append(OmniImageParamImage(image=i)) + use_series = series_amount != "disabled" + if use_series and model_name == "kling-image-o1": + raise ValueError("kling-image-o1 does not support series generation.") response = await sync_op( cls, ApiEndpoint(path="/proxy/kling/v1/images/omni-image", method="POST"), @@ -1339,6 +1661,8 @@ class OmniProImageNode(IO.ComfyNode): resolution=resolution.lower(), aspect_ratio=aspect_ratio, image_list=image_list if image_list else None, + result_type="series" if use_series else None, + series_amount=int(series_amount) if use_series else None, ), ) if response.code: @@ -1351,7 +1675,9 @@ class OmniProImageNode(IO.ComfyNode): response_model=TaskStatusResponse, status_extractor=lambda r: (r.data.task_status if r.data else None), ) - return IO.NodeOutput(await download_url_to_image_tensor(final_response.data.task_result.images[0].url)) + images = final_response.data.task_result.series_images or final_response.data.task_result.images + tensors = [await download_url_to_image_tensor(img.url) for img in images] + return IO.NodeOutput(torch.cat(tensors, dim=0)) class KlingCameraControlT2VNode(IO.ComfyNode): @@ -2119,7 +2445,7 @@ class KlingImageGenerationNode(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingImageGenerationNode", - display_name="Kling Image Generation", + display_name="Kling 3.0 Image", category="api node/image/Kling", description="Kling Image Generation Node. Generate an image from a text prompt with an optional reference image.", inputs=[ @@ -2147,11 +2473,7 @@ class KlingImageGenerationNode(IO.ComfyNode): display_mode=IO.NumberDisplay.slider, tooltip="Subject reference similarity", ), - IO.Combo.Input( - "model_name", - options=[i.value for i in KlingImageGenModelName], - default="kling-v2", - ), + IO.Combo.Input("model_name", options=["kling-v3", "kling-v2", "kling-v1-5"]), IO.Combo.Input( "aspect_ratio", options=[i.value for i in KlingImageGenAspectRatio], @@ -2165,6 +2487,17 @@ class KlingImageGenerationNode(IO.ComfyNode): tooltip="Number of generated images", ), IO.Image.Input("image", optional=True), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + optional=True, + ), ], outputs=[ IO.Image.Output(), @@ -2183,7 +2516,7 @@ class KlingImageGenerationNode(IO.ComfyNode): $base := $contains($m,"kling-v1-5") ? (inputs.image.connected ? 0.028 : 0.014) - : ($contains($m,"kling-v1") ? 0.0035 : 0.014); + : $contains($m,"kling-v3") ? 0.028 : 0.014; {"type":"usd","usd": $base * widgets.n} ) """, @@ -2193,7 +2526,7 @@ class KlingImageGenerationNode(IO.ComfyNode): @classmethod async def execute( cls, - model_name: KlingImageGenModelName, + model_name: str, prompt: str, negative_prompt: str, image_type: KlingImageGenImageReferenceType, @@ -2202,17 +2535,11 @@ class KlingImageGenerationNode(IO.ComfyNode): n: int, aspect_ratio: KlingImageGenAspectRatio, image: torch.Tensor | None = None, + seed: int = 0, ) -> IO.NodeOutput: + _ = seed validate_string(prompt, field_name="prompt", min_length=1, max_length=MAX_PROMPT_LENGTH_IMAGE_GEN) validate_string(negative_prompt, field_name="negative_prompt", max_length=MAX_PROMPT_LENGTH_IMAGE_GEN) - - if image is None: - image_type = None - elif model_name == KlingImageGenModelName.kling_v1: - raise ValueError(f"The model {KlingImageGenModelName.kling_v1.value} does not support reference images.") - else: - image = tensor_to_base64_string(image) - task_creation_response = await sync_op( cls, ApiEndpoint(path=PATH_IMAGE_GENERATIONS, method="POST"), @@ -2221,8 +2548,8 @@ class KlingImageGenerationNode(IO.ComfyNode): model_name=model_name, prompt=prompt, negative_prompt=negative_prompt, - image=image, - image_reference=image_type, + image=tensor_to_base64_string(image) if image is not None else None, + image_reference=image_type if image is not None else None, image_fidelity=image_fidelity, human_fidelity=human_fidelity, n=n, @@ -2252,7 +2579,7 @@ class TextToVideoWithAudio(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingTextToVideoWithAudio", - display_name="Kling Text to Video with Audio", + display_name="Kling 2.6 Text to Video with Audio", category="api node/video/Kling", inputs=[ IO.Combo.Input("model_name", options=["kling-v2-6"]), @@ -2320,7 +2647,7 @@ class ImageToVideoWithAudio(IO.ComfyNode): def define_schema(cls) -> IO.Schema: return IO.Schema( node_id="KlingImageToVideoWithAudio", - display_name="Kling Image(First Frame) to Video with Audio", + display_name="Kling 2.6 Image(First Frame) to Video with Audio", category="api node/video/Kling", inputs=[ IO.Combo.Input("model_name", options=["kling-v2-6"]), @@ -2478,6 +2805,335 @@ class MotionControl(IO.ComfyNode): return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) +class KlingVideoNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingVideoNode", + display_name="Kling 3.0 Video", + category="api node/video/Kling", + description="Generate videos with Kling V3. " + "Supports text-to-video and image-to-video with optional storyboard multi-prompt and audio generation.", + inputs=[ + IO.DynamicCombo.Input( + "multi_shot", + options=[ + IO.DynamicCombo.Option( + "disabled", + [ + IO.String.Input("prompt", multiline=True, default=""), + IO.String.Input("negative_prompt", multiline=True, default=""), + IO.Int.Input( + "duration", + default=5, + min=3, + max=15, + display_mode=IO.NumberDisplay.slider, + ), + ], + ), + IO.DynamicCombo.Option("1 storyboard", _generate_storyboard_inputs(1)), + IO.DynamicCombo.Option("2 storyboards", _generate_storyboard_inputs(2)), + IO.DynamicCombo.Option("3 storyboards", _generate_storyboard_inputs(3)), + IO.DynamicCombo.Option("4 storyboards", _generate_storyboard_inputs(4)), + IO.DynamicCombo.Option("5 storyboards", _generate_storyboard_inputs(5)), + IO.DynamicCombo.Option("6 storyboards", _generate_storyboard_inputs(6)), + ], + tooltip="Generate a series of video segments with individual prompts and durations.", + ), + IO.Boolean.Input("generate_audio", default=True), + IO.DynamicCombo.Input( + "model", + options=[ + IO.DynamicCombo.Option( + "kling-v3", + [ + IO.Combo.Input("resolution", options=["1080p", "720p"]), + IO.Combo.Input( + "aspect_ratio", + options=["16:9", "9:16", "1:1"], + tooltip="Ignored in image-to-video mode.", + ), + ], + ), + ], + tooltip="Model and generation settings.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + ), + IO.Image.Input( + "start_frame", + optional=True, + tooltip="Optional start frame image. When connected, switches to image-to-video mode.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends( + widgets=[ + "model.resolution", + "generate_audio", + "multi_shot", + "multi_shot.duration", + "multi_shot.storyboard_1_duration", + "multi_shot.storyboard_2_duration", + "multi_shot.storyboard_3_duration", + "multi_shot.storyboard_4_duration", + "multi_shot.storyboard_5_duration", + "multi_shot.storyboard_6_duration", + ], + ), + expr=""" + ( + $rates := {"1080p": {"off": 0.112, "on": 0.168}, "720p": {"off": 0.084, "on": 0.126}}; + $res := $lookup(widgets, "model.resolution"); + $audio := widgets.generate_audio ? "on" : "off"; + $rate := $lookup($lookup($rates, $res), $audio); + $ms := widgets.multi_shot; + $isSb := $ms != "disabled"; + $n := $isSb ? $number($substring($ms, 0, 1)) : 0; + $d1 := $lookup(widgets, "multi_shot.storyboard_1_duration"); + $d2 := $n >= 2 ? $lookup(widgets, "multi_shot.storyboard_2_duration") : 0; + $d3 := $n >= 3 ? $lookup(widgets, "multi_shot.storyboard_3_duration") : 0; + $d4 := $n >= 4 ? $lookup(widgets, "multi_shot.storyboard_4_duration") : 0; + $d5 := $n >= 5 ? $lookup(widgets, "multi_shot.storyboard_5_duration") : 0; + $d6 := $n >= 6 ? $lookup(widgets, "multi_shot.storyboard_6_duration") : 0; + $dur := $isSb ? $d1 + $d2 + $d3 + $d4 + $d5 + $d6 : $lookup(widgets, "multi_shot.duration"); + {"type":"usd","usd": $rate * $dur} + ) + """, + ), + ) + + @classmethod + async def execute( + cls, + multi_shot: dict, + generate_audio: bool, + model: dict, + seed: int, + start_frame: Input.Image | None = None, + ) -> IO.NodeOutput: + _ = seed + mode = "pro" if model["resolution"] == "1080p" else "std" + custom_multi_shot = False + if multi_shot["multi_shot"] == "disabled": + shot_type = None + else: + shot_type = "customize" + custom_multi_shot = True + + multi_prompt_list = None + if shot_type == "customize": + count = int(multi_shot["multi_shot"].split()[0]) + multi_prompt_list = [] + for i in range(1, count + 1): + sb_prompt = multi_shot[f"storyboard_{i}_prompt"] + sb_duration = multi_shot[f"storyboard_{i}_duration"] + validate_string(sb_prompt, field_name=f"storyboard_{i}_prompt", min_length=1, max_length=512) + multi_prompt_list.append( + MultiPromptEntry( + index=i, + prompt=sb_prompt, + duration=str(sb_duration), + ) + ) + duration = sum(int(e.duration) for e in multi_prompt_list) + if duration < 3 or duration > 15: + raise ValueError( + f"Total storyboard duration ({duration}s) must be between 3 and 15 seconds." + ) + else: + duration = multi_shot["duration"] + validate_string(multi_shot["prompt"], min_length=1, max_length=2500) + + if start_frame is not None: + validate_image_dimensions(start_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(start_frame, (1, 2.5), (2.5, 1)) + image_url = await upload_image_to_comfyapi(cls, start_frame, wait_label="Uploading start frame") + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/image2video", method="POST"), + response_model=TaskStatusResponse, + data=ImageToVideoWithAudioRequest( + model_name=model["model"], + image=image_url, + prompt=None if custom_multi_shot else multi_shot["prompt"], + negative_prompt=None if custom_multi_shot else multi_shot["negative_prompt"], + mode=mode, + duration=str(duration), + sound="on" if generate_audio else "off", + multi_shot=True if shot_type else None, + multi_prompt=multi_prompt_list, + shot_type=shot_type, + ), + ) + poll_path = f"/proxy/kling/v1/videos/image2video/{response.data.task_id}" + else: + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/text2video", method="POST"), + response_model=TaskStatusResponse, + data=TextToVideoWithAudioRequest( + model_name=model["model"], + aspect_ratio=model["aspect_ratio"], + prompt=None if custom_multi_shot else multi_shot["prompt"], + negative_prompt=None if custom_multi_shot else multi_shot["negative_prompt"], + mode=mode, + duration=str(duration), + sound="on" if generate_audio else "off", + multi_shot=True if shot_type else None, + multi_prompt=multi_prompt_list, + shot_type=shot_type, + ), + ) + poll_path = f"/proxy/kling/v1/videos/text2video/{response.data.task_id}" + + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=poll_path), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + +class KlingFirstLastFrameNode(IO.ComfyNode): + + @classmethod + def define_schema(cls) -> IO.Schema: + return IO.Schema( + node_id="KlingFirstLastFrameNode", + display_name="Kling 3.0 First-Last-Frame to Video", + category="api node/video/Kling", + description="Generate videos with Kling V3 using first and last frames.", + inputs=[ + IO.String.Input("prompt", multiline=True, default=""), + IO.Int.Input( + "duration", + default=5, + min=3, + max=15, + display_mode=IO.NumberDisplay.slider, + ), + IO.Image.Input("first_frame"), + IO.Image.Input("end_frame"), + IO.Boolean.Input("generate_audio", default=True), + IO.DynamicCombo.Input( + "model", + options=[ + IO.DynamicCombo.Option( + "kling-v3", + [ + IO.Combo.Input("resolution", options=["1080p", "720p"]), + ], + ), + ], + tooltip="Model and generation settings.", + ), + IO.Int.Input( + "seed", + default=0, + min=0, + max=2147483647, + display_mode=IO.NumberDisplay.number, + control_after_generate=True, + tooltip="Seed controls whether the node should re-run; " + "results are non-deterministic regardless of seed.", + ), + ], + outputs=[ + IO.Video.Output(), + ], + hidden=[ + IO.Hidden.auth_token_comfy_org, + IO.Hidden.api_key_comfy_org, + IO.Hidden.unique_id, + ], + is_api_node=True, + price_badge=IO.PriceBadge( + depends_on=IO.PriceBadgeDepends( + widgets=["model.resolution", "generate_audio", "duration"], + ), + expr=""" + ( + $rates := {"1080p": {"off": 0.112, "on": 0.168}, "720p": {"off": 0.084, "on": 0.126}}; + $res := $lookup(widgets, "model.resolution"); + $audio := widgets.generate_audio ? "on" : "off"; + $rate := $lookup($lookup($rates, $res), $audio); + {"type":"usd","usd": $rate * widgets.duration} + ) + """, + ), + ) + + @classmethod + async def execute( + cls, + prompt: str, + duration: int, + first_frame: Input.Image, + end_frame: Input.Image, + generate_audio: bool, + model: dict, + seed: int, + ) -> IO.NodeOutput: + _ = seed + validate_string(prompt, min_length=1, max_length=2500) + validate_image_dimensions(first_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(first_frame, (1, 2.5), (2.5, 1)) + validate_image_dimensions(end_frame, min_width=300, min_height=300) + validate_image_aspect_ratio(end_frame, (1, 2.5), (2.5, 1)) + image_url = await upload_image_to_comfyapi(cls, first_frame, wait_label="Uploading first frame") + image_tail_url = await upload_image_to_comfyapi(cls, end_frame, wait_label="Uploading end frame") + response = await sync_op( + cls, + ApiEndpoint(path="/proxy/kling/v1/videos/image2video", method="POST"), + response_model=TaskStatusResponse, + data=ImageToVideoWithAudioRequest( + model_name=model["model"], + image=image_url, + image_tail=image_tail_url, + prompt=prompt, + mode="pro" if model["resolution"] == "1080p" else "std", + duration=str(duration), + sound="on" if generate_audio else "off", + ), + ) + if response.code: + raise RuntimeError( + f"Kling request failed. Code: {response.code}, Message: {response.message}, Data: {response.data}" + ) + final_response = await poll_op( + cls, + ApiEndpoint(path=f"/proxy/kling/v1/videos/image2video/{response.data.task_id}"), + response_model=TaskStatusResponse, + status_extractor=lambda r: (r.data.task_status if r.data else None), + ) + return IO.NodeOutput(await download_url_to_video_output(final_response.data.task_result.videos[0].url)) + + class KlingExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: @@ -2504,6 +3160,8 @@ class KlingExtension(ComfyExtension): TextToVideoWithAudio, ImageToVideoWithAudio, MotionControl, + KlingVideoNode, + KlingFirstLastFrameNode, ] diff --git a/comfy_api_nodes/nodes_moonvalley.py b/comfy_api_nodes/nodes_moonvalley.py index 08315fa2b..78a230529 100644 --- a/comfy_api_nodes/nodes_moonvalley.py +++ b/comfy_api_nodes/nodes_moonvalley.py @@ -219,8 +219,8 @@ class MoonvalleyImg2VideoNode(IO.ComfyNode): ), IO.Int.Input( "steps", - default=33, - min=1, + default=80, + min=75, # steps should be greater or equal to cooldown_steps(75) + warmup_steps(0) max=100, step=1, tooltip="Number of denoising steps", @@ -340,8 +340,8 @@ class MoonvalleyVideo2VideoNode(IO.ComfyNode): ), IO.Int.Input( "steps", - default=33, - min=1, + default=60, + min=60, # steps should be greater or equal to cooldown_steps(36) + warmup_steps(24) max=100, step=1, display_mode=IO.NumberDisplay.number, @@ -370,7 +370,7 @@ class MoonvalleyVideo2VideoNode(IO.ComfyNode): video: Input.Video | None = None, control_type: str = "Motion Transfer", motion_intensity: int | None = 100, - steps=33, + steps=60, prompt_adherence=4.5, ) -> IO.NodeOutput: validated_video = validate_video_to_video_input(video) @@ -465,8 +465,8 @@ class MoonvalleyTxt2VideoNode(IO.ComfyNode): ), IO.Int.Input( "steps", - default=33, - min=1, + default=80, + min=75, # steps should be greater or equal to cooldown_steps(75) + warmup_steps(0) max=100, step=1, tooltip="Inference steps", diff --git a/comfy_execution/jobs.py b/comfy_execution/jobs.py index bf091a448..370014fb6 100644 --- a/comfy_execution/jobs.py +++ b/comfy_execution/jobs.py @@ -20,10 +20,60 @@ class JobStatus: # Media types that can be previewed in the frontend -PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio'}) +PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio', '3d'}) # 3D file extensions for preview fallback (no dedicated media_type exists) -THREE_D_EXTENSIONS = frozenset({'.obj', '.fbx', '.gltf', '.glb'}) +THREE_D_EXTENSIONS = frozenset({'.obj', '.fbx', '.gltf', '.glb', '.usdz'}) + + +def has_3d_extension(filename: str) -> bool: + lower = filename.lower() + return any(lower.endswith(ext) for ext in THREE_D_EXTENSIONS) + + +def normalize_output_item(item): + """Normalize a single output list item for the jobs API. + + Returns the normalized item, or None to exclude it. + String items with 3D extensions become {filename, type, subfolder} dicts. + """ + if item is None: + return None + if isinstance(item, str): + if has_3d_extension(item): + return {'filename': item, 'type': 'output', 'subfolder': '', 'mediaType': '3d'} + return None + if isinstance(item, dict): + return item + return None + + +def normalize_outputs(outputs: dict) -> dict: + """Normalize raw node outputs for the jobs API. + + Transforms string 3D filenames into file output dicts and removes + None items. All other items (non-3D strings, dicts, etc.) are + preserved as-is. + """ + normalized = {} + for node_id, node_outputs in outputs.items(): + if not isinstance(node_outputs, dict): + normalized[node_id] = node_outputs + continue + normalized_node = {} + for media_type, items in node_outputs.items(): + if media_type == 'animated' or not isinstance(items, list): + normalized_node[media_type] = items + continue + normalized_items = [] + for item in items: + if item is None: + continue + norm = normalize_output_item(item) + normalized_items.append(norm if norm is not None else item) + normalized_node[media_type] = normalized_items + normalized[node_id] = normalized_node + return normalized def _extract_job_metadata(extra_data: dict) -> tuple[Optional[int], Optional[str]]: @@ -45,9 +95,9 @@ def is_previewable(media_type: str, item: dict) -> bool: Maintains backwards compatibility with existing logic. Priority: - 1. media_type is 'images', 'video', or 'audio' + 1. media_type is 'images', 'video', 'audio', or '3d' 2. format field starts with 'video/' or 'audio/' - 3. filename has a 3D extension (.obj, .fbx, .gltf, .glb) + 3. filename has a 3D extension (.obj, .fbx, .gltf, .glb, .usdz) """ if media_type in PREVIEWABLE_MEDIA_TYPES: return True @@ -139,7 +189,7 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs: }) if include_outputs: - job['outputs'] = outputs + job['outputs'] = normalize_outputs(outputs) job['execution_status'] = status_info job['workflow'] = { 'prompt': prompt, @@ -171,18 +221,23 @@ def get_outputs_summary(outputs: dict) -> tuple[int, Optional[dict]]: continue for item in items: - count += 1 - - if not isinstance(item, dict): + normalized = normalize_output_item(item) + if normalized is None: continue - if preview_output is None and is_previewable(media_type, item): + count += 1 + + if preview_output is not None: + continue + + if isinstance(normalized, dict) and is_previewable(media_type, normalized): enriched = { - **item, + **normalized, 'nodeId': node_id, - 'mediaType': media_type } - if item.get('type') == 'output': + if 'mediaType' not in normalized: + enriched['mediaType'] = media_type + if normalized.get('type') == 'output': preview_output = enriched elif fallback_preview is None: fallback_preview = enriched diff --git a/comfy_extras/nodes_audio.py b/comfy_extras/nodes_audio.py index bef723dce..b63dd8e97 100644 --- a/comfy_extras/nodes_audio.py +++ b/comfy_extras/nodes_audio.py @@ -94,6 +94,19 @@ class VAEEncodeAudio(IO.ComfyNode): encode = execute # TODO: remove +def vae_decode_audio(vae, samples, tile=None, overlap=None): + if tile is not None: + audio = vae.decode_tiled(samples["samples"], tile_y=tile, overlap=overlap).movedim(-1, 1) + else: + audio = vae.decode(samples["samples"]).movedim(-1, 1) + + std = torch.std(audio, dim=[1, 2], keepdim=True) * 5.0 + std[std < 1.0] = 1.0 + audio /= std + vae_sample_rate = getattr(vae, "audio_sample_rate", 44100) + return {"waveform": audio, "sample_rate": vae_sample_rate if "sample_rate" not in samples else samples["sample_rate"]} + + class VAEDecodeAudio(IO.ComfyNode): @classmethod def define_schema(cls): @@ -111,16 +124,33 @@ class VAEDecodeAudio(IO.ComfyNode): @classmethod def execute(cls, vae, samples) -> IO.NodeOutput: - audio = vae.decode(samples["samples"]).movedim(-1, 1) - std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 - std[std < 1.0] = 1.0 - audio /= std - vae_sample_rate = getattr(vae, "audio_sample_rate", 44100) - return IO.NodeOutput({"waveform": audio, "sample_rate": vae_sample_rate if "sample_rate" not in samples else samples["sample_rate"]}) + return IO.NodeOutput(vae_decode_audio(vae, samples)) decode = execute # TODO: remove +class VAEDecodeAudioTiled(IO.ComfyNode): + @classmethod + def define_schema(cls): + return IO.Schema( + node_id="VAEDecodeAudioTiled", + search_aliases=["latent to audio"], + display_name="VAE Decode Audio (Tiled)", + category="latent/audio", + inputs=[ + IO.Latent.Input("samples"), + IO.Vae.Input("vae"), + IO.Int.Input("tile_size", default=512, min=32, max=8192, step=8), + IO.Int.Input("overlap", default=64, min=0, max=1024, step=8), + ], + outputs=[IO.Audio.Output()], + ) + + @classmethod + def execute(cls, vae, samples, tile_size, overlap) -> IO.NodeOutput: + return IO.NodeOutput(vae_decode_audio(vae, samples, tile_size, overlap)) + + class SaveAudio(IO.ComfyNode): @classmethod def define_schema(cls): @@ -675,6 +705,7 @@ class AudioExtension(ComfyExtension): EmptyLatentAudio, VAEEncodeAudio, VAEDecodeAudio, + VAEDecodeAudioTiled, SaveAudio, SaveAudioMP3, SaveAudioOpus, diff --git a/comfy_extras/nodes_custom_sampler.py b/comfy_extras/nodes_custom_sampler.py index 8afd13acf..61a234634 100644 --- a/comfy_extras/nodes_custom_sampler.py +++ b/comfy_extras/nodes_custom_sampler.py @@ -622,6 +622,7 @@ class SamplerSASolver(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="SamplerSASolver", + search_aliases=["sde"], category="sampling/custom_sampling/samplers", inputs=[ io.Model.Input("model"), @@ -666,6 +667,7 @@ class SamplerSEEDS2(io.ComfyNode): def define_schema(cls): return io.Schema( node_id="SamplerSEEDS2", + search_aliases=["sde", "exp heun"], category="sampling/custom_sampling/samplers", inputs=[ io.Combo.Input("solver_type", options=["phi_1", "phi_2"]), diff --git a/comfy_extras/nodes_easycache.py b/comfy_extras/nodes_easycache.py index 90d730df6..b1912392c 100644 --- a/comfy_extras/nodes_easycache.py +++ b/comfy_extras/nodes_easycache.py @@ -9,6 +9,14 @@ if TYPE_CHECKING: from uuid import UUID +def _extract_tensor(data, output_channels): + """Extract tensor from data, handling both single tensors and lists.""" + if isinstance(data, list): + # LTX2 AV tensors: [video, audio] + return data[0][:, :output_channels], data[1][:, :output_channels] + return data[:, :output_channels], None + + def easycache_forward_wrapper(executor, *args, **kwargs): # get values from args transformer_options: dict[str] = args[-1] @@ -17,7 +25,7 @@ def easycache_forward_wrapper(executor, *args, **kwargs): if not transformer_options: transformer_options = args[-2] easycache: EasyCacheHolder = transformer_options["easycache"] - x: torch.Tensor = args[0][:, :easycache.output_channels] + x, ax = _extract_tensor(args[0], easycache.output_channels) sigmas = transformer_options["sigmas"] uuids = transformer_options["uuids"] if sigmas is not None and easycache.is_past_end_timestep(sigmas): @@ -35,7 +43,11 @@ def easycache_forward_wrapper(executor, *args, **kwargs): if easycache.skip_current_step and can_apply_cache_diff: if easycache.verbose: logging.info(f"EasyCache [verbose] - was marked to skip this step by {easycache.first_cond_uuid}. Present uuids: {uuids}") - return easycache.apply_cache_diff(x, uuids) + result = easycache.apply_cache_diff(x, uuids) + if ax is not None: + result_audio = easycache.apply_cache_diff(ax, uuids, is_audio=True) + return [result, result_audio] + return result if easycache.initial_step: easycache.first_cond_uuid = uuids[0] has_first_cond_uuid = easycache.has_first_cond_uuid(uuids) @@ -51,13 +63,18 @@ def easycache_forward_wrapper(executor, *args, **kwargs): logging.info(f"EasyCache [verbose] - skipping step; cumulative_change_rate: {easycache.cumulative_change_rate}, reuse_threshold: {easycache.reuse_threshold}") # other conds should also skip this step, and instead use their cached values easycache.skip_current_step = True - return easycache.apply_cache_diff(x, uuids) + result = easycache.apply_cache_diff(x, uuids) + if ax is not None: + result_audio = easycache.apply_cache_diff(ax, uuids, is_audio=True) + return [result, result_audio] + return result else: if easycache.verbose: logging.info(f"EasyCache [verbose] - NOT skipping step; cumulative_change_rate: {easycache.cumulative_change_rate}, reuse_threshold: {easycache.reuse_threshold}") easycache.cumulative_change_rate = 0.0 - output: torch.Tensor = executor(*args, **kwargs) + full_output: torch.Tensor = executor(*args, **kwargs) + output, audio_output = _extract_tensor(full_output, easycache.output_channels) if has_first_cond_uuid and easycache.has_output_prev_norm(): output_change = (easycache.subsample(output, uuids, clone=False) - easycache.output_prev_subsampled).flatten().abs().mean() if easycache.verbose: @@ -74,13 +91,15 @@ def easycache_forward_wrapper(executor, *args, **kwargs): logging.info(f"EasyCache [verbose] - output_change_rate: {output_change_rate}") # TODO: allow cache_diff to be offloaded easycache.update_cache_diff(output, next_x_prev, uuids) + if audio_output is not None: + easycache.update_cache_diff(audio_output, ax, uuids, is_audio=True) if has_first_cond_uuid: easycache.x_prev_subsampled = easycache.subsample(next_x_prev, uuids) easycache.output_prev_subsampled = easycache.subsample(output, uuids) easycache.output_prev_norm = output.flatten().abs().mean() if easycache.verbose: logging.info(f"EasyCache [verbose] - x_prev_subsampled: {easycache.x_prev_subsampled.shape}") - return output + return full_output def lazycache_predict_noise_wrapper(executor, *args, **kwargs): # get values from args @@ -89,8 +108,8 @@ def lazycache_predict_noise_wrapper(executor, *args, **kwargs): easycache: LazyCacheHolder = model_options["transformer_options"]["easycache"] if easycache.is_past_end_timestep(timestep): return executor(*args, **kwargs) - # prepare next x_prev x: torch.Tensor = args[0][:, :easycache.output_channels] + # prepare next x_prev next_x_prev = x input_change = None do_easycache = easycache.should_do_easycache(timestep) @@ -197,6 +216,7 @@ class EasyCacheHolder: self.output_prev_subsampled: torch.Tensor = None self.output_prev_norm: torch.Tensor = None self.uuid_cache_diffs: dict[UUID, torch.Tensor] = {} + self.uuid_cache_diffs_audio: dict[UUID, torch.Tensor] = {} self.output_change_rates = [] self.approx_output_change_rates = [] self.total_steps_skipped = 0 @@ -245,20 +265,21 @@ class EasyCacheHolder: def can_apply_cache_diff(self, uuids: list[UUID]) -> bool: return all(uuid in self.uuid_cache_diffs for uuid in uuids) - def apply_cache_diff(self, x: torch.Tensor, uuids: list[UUID]): - if self.first_cond_uuid in uuids: + def apply_cache_diff(self, x: torch.Tensor, uuids: list[UUID], is_audio: bool = False): + if self.first_cond_uuid in uuids and not is_audio: self.total_steps_skipped += 1 + cache_diffs = self.uuid_cache_diffs_audio if is_audio else self.uuid_cache_diffs batch_offset = x.shape[0] // len(uuids) for i, uuid in enumerate(uuids): # slice out only what is relevant to this cond batch_slice = [slice(i*batch_offset,(i+1)*batch_offset)] # if cached dims don't match x dims, cut off excess and hope for the best (cosmos world2video) - if x.shape[1:] != self.uuid_cache_diffs[uuid].shape[1:]: + if x.shape[1:] != cache_diffs[uuid].shape[1:]: if not self.allow_mismatch: raise ValueError(f"Cached dims {self.uuid_cache_diffs[uuid].shape} don't match x dims {x.shape} - this is no good") slicing = [] skip_this_dim = True - for dim_u, dim_x in zip(self.uuid_cache_diffs[uuid].shape, x.shape): + for dim_u, dim_x in zip(cache_diffs[uuid].shape, x.shape): if skip_this_dim: skip_this_dim = False continue @@ -270,10 +291,11 @@ class EasyCacheHolder: else: slicing.append(slice(None)) batch_slice = batch_slice + slicing - x[tuple(batch_slice)] += self.uuid_cache_diffs[uuid].to(x.device) + x[tuple(batch_slice)] += cache_diffs[uuid].to(x.device) return x - def update_cache_diff(self, output: torch.Tensor, x: torch.Tensor, uuids: list[UUID]): + def update_cache_diff(self, output: torch.Tensor, x: torch.Tensor, uuids: list[UUID], is_audio: bool = False): + cache_diffs = self.uuid_cache_diffs_audio if is_audio else self.uuid_cache_diffs # if output dims don't match x dims, cut off excess and hope for the best (cosmos world2video) if output.shape[1:] != x.shape[1:]: if not self.allow_mismatch: @@ -293,7 +315,7 @@ class EasyCacheHolder: diff = output - x batch_offset = diff.shape[0] // len(uuids) for i, uuid in enumerate(uuids): - self.uuid_cache_diffs[uuid] = diff[i*batch_offset:(i+1)*batch_offset, ...] + cache_diffs[uuid] = diff[i*batch_offset:(i+1)*batch_offset, ...] def has_first_cond_uuid(self, uuids: list[UUID]) -> bool: return self.first_cond_uuid in uuids @@ -324,6 +346,8 @@ class EasyCacheHolder: self.output_prev_norm = None del self.uuid_cache_diffs self.uuid_cache_diffs = {} + del self.uuid_cache_diffs_audio + self.uuid_cache_diffs_audio = {} self.total_steps_skipped = 0 self.state_metadata = None return self diff --git a/comfy_extras/nodes_latent.py b/comfy_extras/nodes_latent.py index 6aecf1561..8d2d7297a 100644 --- a/comfy_extras/nodes_latent.py +++ b/comfy_extras/nodes_latent.py @@ -391,8 +391,9 @@ class LatentOperationTonemapReinhard(io.ComfyNode): latent_vector_magnitude = (torch.linalg.vector_norm(latent, dim=(1)) + 0.0000000001)[:,None] normalized_latent = latent / latent_vector_magnitude - mean = torch.mean(latent_vector_magnitude, dim=(1,2,3), keepdim=True) - std = torch.std(latent_vector_magnitude, dim=(1,2,3), keepdim=True) + dims = list(range(1, latent_vector_magnitude.ndim)) + mean = torch.mean(latent_vector_magnitude, dim=dims, keepdim=True) + std = torch.std(latent_vector_magnitude, dim=dims, keepdim=True) top = (std * 5 + mean) * multiplier diff --git a/comfy_extras/nodes_toolkit.py b/comfy_extras/nodes_toolkit.py new file mode 100644 index 000000000..71faf7226 --- /dev/null +++ b/comfy_extras/nodes_toolkit.py @@ -0,0 +1,47 @@ +from __future__ import annotations +from typing_extensions import override +from comfy_api.latest import ComfyExtension, io + + +class CreateList(io.ComfyNode): + @classmethod + def define_schema(cls): + template_matchtype = io.MatchType.Template("type") + template_autogrow = io.Autogrow.TemplatePrefix( + input=io.MatchType.Input("input", template=template_matchtype), + prefix="input", + ) + return io.Schema( + node_id="CreateList", + display_name="Create List", + category="logic", + is_input_list=True, + search_aliases=["Image Iterator", "Text Iterator", "Iterator"], + inputs=[io.Autogrow.Input("inputs", template=template_autogrow)], + outputs=[ + io.MatchType.Output( + template=template_matchtype, + is_output_list=True, + display_name="list", + ), + ], + ) + + @classmethod + def execute(cls, inputs: io.Autogrow.Type) -> io.NodeOutput: + output_list = [] + for input in inputs.values(): + output_list += input + return io.NodeOutput(output_list) + + +class ToolkitExtension(ComfyExtension): + @override + async def get_node_list(self) -> list[type[io.ComfyNode]]: + return [ + CreateList, + ] + + +async def comfy_entrypoint() -> ToolkitExtension: + return ToolkitExtension() diff --git a/comfy_extras/nodes_video.py b/comfy_extras/nodes_video.py index ccf7b63d3..cd765a7c1 100644 --- a/comfy_extras/nodes_video.py +++ b/comfy_extras/nodes_video.py @@ -202,6 +202,56 @@ class LoadVideo(io.ComfyNode): return True +class VideoSlice(io.ComfyNode): + @classmethod + def define_schema(cls): + return io.Schema( + node_id="Video Slice", + display_name="Video Slice", + search_aliases=[ + "trim video duration", + "skip first frames", + "frame load cap", + "start time", + ], + category="image/video", + inputs=[ + io.Video.Input("video"), + io.Float.Input( + "start_time", + default=0.0, + max=1e5, + min=-1e5, + step=0.001, + tooltip="Start time in seconds", + ), + io.Float.Input( + "duration", + default=0.0, + min=0.0, + step=0.001, + tooltip="Duration in seconds, or 0 for unlimited duration", + ), + io.Boolean.Input( + "strict_duration", + default=False, + tooltip="If True, when the specified duration is not possible, an error will be raised.", + ), + ], + outputs=[ + io.Video.Output(), + ], + ) + + @classmethod + def execute(cls, video: io.Video.Type, start_time: float, duration: float, strict_duration: bool) -> io.NodeOutput: + trimmed = video.as_trimmed(start_time, duration, strict_duration=strict_duration) + if trimmed is not None: + return io.NodeOutput(trimmed) + raise ValueError( + f"Failed to slice video:\nSource duration: {video.get_duration()}\nStart time: {start_time}\nTarget duration: {duration}" + ) + class VideoExtension(ComfyExtension): @override @@ -212,6 +262,7 @@ class VideoExtension(ComfyExtension): CreateVideo, GetVideoComponents, LoadVideo, + VideoSlice, ] async def comfy_entrypoint() -> VideoExtension: diff --git a/comfyui_version.py b/comfyui_version.py index 5d296cd1b..cf4e89816 100644 --- a/comfyui_version.py +++ b/comfyui_version.py @@ -1,3 +1,3 @@ # This file is automatically generated by the build process when version is # updated in pyproject.toml. -__version__ = "0.12.2" +__version__ = "0.13.0" diff --git a/execution.py b/execution.py index 3dbab82e6..896862c6b 100644 --- a/execution.py +++ b/execution.py @@ -13,8 +13,11 @@ from contextlib import nullcontext import torch +from comfy.cli_args import args import comfy.memory_management import comfy.model_management +import comfy_aimdo.model_vbar + from latent_preview import set_preview_method import nodes from comfy_execution.caching import ( @@ -527,8 +530,10 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed, output_data, output_ui, has_subgraph, has_pending_tasks = await get_output_data(prompt_id, unique_id, obj, input_data_all, execution_block_cb=execution_block_cb, pre_execute_cb=pre_execute_cb, v3_data=v3_data) finally: if allocator is not None: + if args.verbose == "DEBUG": + comfy_aimdo.model_vbar.vbars_analyze() comfy.model_management.reset_cast_buffers() - torch.cuda.synchronize() + comfy_aimdo.model_vbar.vbars_reset_watermark_limits() if has_pending_tasks: pending_async_nodes[unique_id] = output_data diff --git a/nodes.py b/nodes.py index e11a8ed80..91de7a9d7 100644 --- a/nodes.py +++ b/nodes.py @@ -2433,7 +2433,8 @@ async def init_builtin_extra_nodes(): "nodes_image_compare.py", "nodes_zimage.py", "nodes_lora_debug.py", - "nodes_color.py" + "nodes_color.py", + "nodes_toolkit.py", ] import_failed = [] diff --git a/pyproject.toml b/pyproject.toml index 1ddcc3596..9dab9a50c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "ComfyUI" -version = "0.12.2" +version = "0.13.0" readme = "README.md" license = { file = "LICENSE" } requires-python = ">=3.10" diff --git a/requirements.txt b/requirements.txt index 0c401873a..7de6a413c 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,6 @@ -comfyui-frontend-package==1.37.11 -comfyui-workflow-templates==0.8.31 -comfyui-embedded-docs==0.4.0 +comfyui-frontend-package==1.38.13 +comfyui-workflow-templates==0.8.38 +comfyui-embedded-docs==0.4.1 torch torchsde torchvision @@ -22,7 +22,7 @@ alembic SQLAlchemy av>=14.2.0 comfy-kitchen>=0.2.7 -comfy-aimdo>=0.1.7 +comfy-aimdo>=0.1.8 requests #non essential dependencies: diff --git a/tests/execution/test_jobs.py b/tests/execution/test_jobs.py index 4d2f9ed36..83c36fe48 100644 --- a/tests/execution/test_jobs.py +++ b/tests/execution/test_jobs.py @@ -5,8 +5,11 @@ from comfy_execution.jobs import ( is_previewable, normalize_queue_item, normalize_history_item, + normalize_output_item, + normalize_outputs, get_outputs_summary, apply_sorting, + has_3d_extension, ) @@ -35,8 +38,8 @@ class TestIsPreviewable: """Unit tests for is_previewable()""" def test_previewable_media_types(self): - """Images, video, audio media types should be previewable.""" - for media_type in ['images', 'video', 'audio']: + """Images, video, audio, 3d media types should be previewable.""" + for media_type in ['images', 'video', 'audio', '3d']: assert is_previewable(media_type, {}) is True def test_non_previewable_media_types(self): @@ -46,7 +49,7 @@ class TestIsPreviewable: def test_3d_extensions_previewable(self): """3D file extensions should be previewable regardless of media_type.""" - for ext in ['.obj', '.fbx', '.gltf', '.glb']: + for ext in ['.obj', '.fbx', '.gltf', '.glb', '.usdz']: item = {'filename': f'model{ext}'} assert is_previewable('files', item) is True @@ -160,7 +163,7 @@ class TestGetOutputsSummary: def test_3d_files_previewable(self): """3D file extensions should be previewable.""" - for ext in ['.obj', '.fbx', '.gltf', '.glb']: + for ext in ['.obj', '.fbx', '.gltf', '.glb', '.usdz']: outputs = { 'node1': { 'files': [{'filename': f'model{ext}', 'type': 'output'}] @@ -192,6 +195,64 @@ class TestGetOutputsSummary: assert preview['mediaType'] == 'images' assert preview['subfolder'] == 'outputs' + def test_string_3d_filename_creates_preview(self): + """String items with 3D extensions should synthesize a preview (Preview3D node output). + Only the .glb counts — nulls and non-file strings are excluded.""" + outputs = { + 'node1': { + 'result': ['preview3d_abc123.glb', None, None] + } + } + count, preview = get_outputs_summary(outputs) + assert count == 1 + assert preview is not None + assert preview['filename'] == 'preview3d_abc123.glb' + assert preview['mediaType'] == '3d' + assert preview['nodeId'] == 'node1' + assert preview['type'] == 'output' + + def test_string_non_3d_filename_no_preview(self): + """String items without 3D extensions should not create a preview.""" + outputs = { + 'node1': { + 'result': ['data.json', None] + } + } + count, preview = get_outputs_summary(outputs) + assert count == 0 + assert preview is None + + def test_string_3d_filename_used_as_fallback(self): + """String 3D preview should be used when no dict items are previewable.""" + outputs = { + 'node1': { + 'latents': [{'filename': 'latent.safetensors'}], + }, + 'node2': { + 'result': ['model.glb', None] + } + } + count, preview = get_outputs_summary(outputs) + assert preview is not None + assert preview['filename'] == 'model.glb' + assert preview['mediaType'] == '3d' + + +class TestHas3DExtension: + """Unit tests for has_3d_extension()""" + + def test_recognized_extensions(self): + for ext in ['.obj', '.fbx', '.gltf', '.glb', '.usdz']: + assert has_3d_extension(f'model{ext}') is True + + def test_case_insensitive(self): + assert has_3d_extension('MODEL.GLB') is True + assert has_3d_extension('Scene.GLTF') is True + + def test_non_3d_extensions(self): + for name in ['photo.png', 'video.mp4', 'data.json', 'model']: + assert has_3d_extension(name) is False + class TestApplySorting: """Unit tests for apply_sorting()""" @@ -395,3 +456,142 @@ class TestNormalizeHistoryItem: 'prompt': {'nodes': {'1': {}}}, 'extra_data': {'create_time': 1234567890, 'client_id': 'abc'}, } + + def test_include_outputs_normalizes_3d_strings(self): + """Detail view should transform string 3D filenames into file output dicts.""" + history_item = { + 'prompt': ( + 5, + 'prompt-3d', + {'nodes': {}}, + {'create_time': 1234567890}, + ['node1'], + ), + 'status': {'status_str': 'success', 'completed': True, 'messages': []}, + 'outputs': { + 'node1': { + 'result': ['preview3d_abc123.glb', None, None] + } + }, + } + job = normalize_history_item('prompt-3d', history_item, include_outputs=True) + + assert job['outputs_count'] == 1 + result_items = job['outputs']['node1']['result'] + assert len(result_items) == 1 + assert result_items[0] == { + 'filename': 'preview3d_abc123.glb', + 'type': 'output', + 'subfolder': '', + 'mediaType': '3d', + } + + def test_include_outputs_preserves_dict_items(self): + """Detail view normalization should pass dict items through unchanged.""" + history_item = { + 'prompt': ( + 5, + 'prompt-img', + {'nodes': {}}, + {'create_time': 1234567890}, + ['node1'], + ), + 'status': {'status_str': 'success', 'completed': True, 'messages': []}, + 'outputs': { + 'node1': { + 'images': [ + {'filename': 'photo.png', 'type': 'output', 'subfolder': ''}, + ] + } + }, + } + job = normalize_history_item('prompt-img', history_item, include_outputs=True) + + assert job['outputs_count'] == 1 + assert job['outputs']['node1']['images'] == [ + {'filename': 'photo.png', 'type': 'output', 'subfolder': ''}, + ] + + +class TestNormalizeOutputItem: + """Unit tests for normalize_output_item()""" + + def test_none_returns_none(self): + assert normalize_output_item(None) is None + + def test_string_3d_extension_synthesizes_dict(self): + result = normalize_output_item('model.glb') + assert result == {'filename': 'model.glb', 'type': 'output', 'subfolder': '', 'mediaType': '3d'} + + def test_string_non_3d_extension_returns_none(self): + assert normalize_output_item('data.json') is None + + def test_string_no_extension_returns_none(self): + assert normalize_output_item('camera_info_string') is None + + def test_dict_passes_through(self): + item = {'filename': 'test.png', 'type': 'output'} + assert normalize_output_item(item) is item + + def test_other_types_return_none(self): + assert normalize_output_item(42) is None + assert normalize_output_item(True) is None + + +class TestNormalizeOutputs: + """Unit tests for normalize_outputs()""" + + def test_empty_outputs(self): + assert normalize_outputs({}) == {} + + def test_dict_items_pass_through(self): + outputs = { + 'node1': { + 'images': [{'filename': 'a.png', 'type': 'output'}], + } + } + result = normalize_outputs(outputs) + assert result == outputs + + def test_3d_string_synthesized(self): + outputs = { + 'node1': { + 'result': ['model.glb', None, None], + } + } + result = normalize_outputs(outputs) + assert result == { + 'node1': { + 'result': [ + {'filename': 'model.glb', 'type': 'output', 'subfolder': '', 'mediaType': '3d'}, + ], + } + } + + def test_animated_key_preserved(self): + outputs = { + 'node1': { + 'images': [{'filename': 'a.png', 'type': 'output'}], + 'animated': [True], + } + } + result = normalize_outputs(outputs) + assert result['node1']['animated'] == [True] + + def test_non_dict_node_outputs_preserved(self): + outputs = {'node1': 'unexpected_value'} + result = normalize_outputs(outputs) + assert result == {'node1': 'unexpected_value'} + + def test_none_items_filtered_but_other_types_preserved(self): + outputs = { + 'node1': { + 'result': ['data.json', None, [1, 2, 3]], + } + } + result = normalize_outputs(outputs) + assert result == { + 'node1': { + 'result': ['data.json', [1, 2, 3]], + } + }