Basic implementation of z image fun control union 2.0 (#11304)

The inpaint part is currently missing and will be implemented later.

I think they messed up this model pretty bad. They added some
control_noise_refiner blocks but don't actually use them. There is a typo
in their code so instead of doing control_noise_refiner -> control_layers
it runs the whole control_layers twice.

Unfortunately they trained with this typo so the model works but is kind
of slow and would probably perform a lot better if they corrected their
code and trained it again.
This commit is contained in:
comfyanonymous
2025-12-12 22:39:11 -08:00
committed by GitHub
parent c5a47a1692
commit da2bfb5b0a
4 changed files with 142 additions and 44 deletions

View File

@@ -243,7 +243,13 @@ class ModelPatchLoader:
model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
elif 'control_all_x_embedder.2-1.weight' in sd: # alipai z image fun controlnet
sd = z_image_convert(sd)
model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
config = {}
if 'control_layers.14.adaLN_modulation.0.weight' in sd:
config['n_control_layers'] = 15
config['additional_in_dim'] = 17
config['refiner_control'] = True
config['broken'] = True
model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast, **config)
model.load_state_dict(sd)
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
@@ -297,56 +303,86 @@ class DiffSynthCnetPatch:
return [self.model_patch]
class ZImageControlPatch:
def __init__(self, model_patch, vae, image, strength):
def __init__(self, model_patch, vae, image, strength, inpaint_image=None, mask=None):
self.model_patch = model_patch
self.vae = vae
self.image = image
self.inpaint_image = inpaint_image
self.mask = mask
self.strength = strength
self.encoded_image = self.encode_latent_cond(image)
self.encoded_image_size = (image.shape[1], image.shape[2])
self.temp_data = None
def encode_latent_cond(self, image):
latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(image))
return latent_image
def encode_latent_cond(self, control_image, inpaint_image=None):
latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(control_image))
if self.model_patch.model.additional_in_dim > 0:
if self.mask is None:
mask_ = torch.zeros_like(latent_image)[:, :1]
else:
mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none")
if inpaint_image is None:
inpaint_image = torch.ones_like(control_image) * 0.5
inpaint_image_latent = comfy.latent_formats.Flux().process_in(self.vae.encode(inpaint_image))
return torch.cat([latent_image, mask_, inpaint_image_latent], dim=1)
else:
return latent_image
def __call__(self, kwargs):
x = kwargs.get("x")
img = kwargs.get("img")
img_input = kwargs.get("img_input")
txt = kwargs.get("txt")
pe = kwargs.get("pe")
vec = kwargs.get("vec")
block_index = kwargs.get("block_index")
block_type = kwargs.get("block_type", "")
spacial_compression = self.vae.spacial_compression_encode()
if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression):
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
inpaint_scaled = None
if self.inpaint_image is not None:
inpaint_scaled = comfy.utils.common_upscale(self.inpaint_image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1)
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1))
self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1), inpaint_scaled)
self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1])
comfy.model_management.load_models_gpu(loaded_models)
cnet_index = (block_index // 5)
cnet_index_float = (block_index / 5)
cnet_blocks = self.model_patch.model.n_control_layers
div = round(30 / cnet_blocks)
cnet_index = (block_index // div)
cnet_index_float = (block_index / div)
kwargs.pop("img") # we do ops in place
kwargs.pop("txt")
cnet_blocks = self.model_patch.model.n_control_layers
if cnet_index_float > (cnet_blocks - 1):
self.temp_data = None
return kwargs
if self.temp_data is None or self.temp_data[0] > cnet_index:
self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec)))
if block_type == "noise_refiner":
self.temp_data = (-3, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec)))
else:
self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec)))
while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks:
if block_type == "noise_refiner":
next_layer = self.temp_data[0] + 1
self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img[:, :self.temp_data[1][1].shape[1]], None, pe, vec))
self.temp_data = (next_layer, self.model_patch.model.forward_noise_refiner_block(block_index, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec))
if self.temp_data[1][0] is not None:
img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength)
else:
while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks:
next_layer = self.temp_data[0] + 1
self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec))
if cnet_index_float == self.temp_data[0]:
img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength)
if cnet_blocks == self.temp_data[0] + 1:
self.temp_data = None
if cnet_index_float == self.temp_data[0]:
img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength)
if cnet_blocks == self.temp_data[0] + 1:
self.temp_data = None
return kwargs
@@ -386,7 +422,9 @@ class QwenImageDiffsynthControlnet:
mask = 1.0 - mask
if isinstance(model_patch.model, comfy.ldm.lumina.controlnet.ZImage_Control):
model_patched.set_model_double_block_patch(ZImageControlPatch(model_patch, vae, image, strength))
patch = ZImageControlPatch(model_patch, vae, image, strength, mask=mask)
model_patched.set_model_noise_refiner_patch(patch)
model_patched.set_model_double_block_patch(patch)
else:
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask))
return (model_patched,)