mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-11 02:30:04 +00:00
Basic implementation of z image fun control union 2.0 (#11304)
The inpaint part is currently missing and will be implemented later. I think they messed up this model pretty bad. They added some control_noise_refiner blocks but don't actually use them. There is a typo in their code so instead of doing control_noise_refiner -> control_layers it runs the whole control_layers twice. Unfortunately they trained with this typo so the model works but is kind of slow and would probably perform a lot better if they corrected their code and trained it again.
This commit is contained in:
@@ -243,7 +243,13 @@ class ModelPatchLoader:
|
||||
model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
|
||||
elif 'control_all_x_embedder.2-1.weight' in sd: # alipai z image fun controlnet
|
||||
sd = z_image_convert(sd)
|
||||
model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
|
||||
config = {}
|
||||
if 'control_layers.14.adaLN_modulation.0.weight' in sd:
|
||||
config['n_control_layers'] = 15
|
||||
config['additional_in_dim'] = 17
|
||||
config['refiner_control'] = True
|
||||
config['broken'] = True
|
||||
model = comfy.ldm.lumina.controlnet.ZImage_Control(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast, **config)
|
||||
|
||||
model.load_state_dict(sd)
|
||||
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
|
||||
@@ -297,56 +303,86 @@ class DiffSynthCnetPatch:
|
||||
return [self.model_patch]
|
||||
|
||||
class ZImageControlPatch:
|
||||
def __init__(self, model_patch, vae, image, strength):
|
||||
def __init__(self, model_patch, vae, image, strength, inpaint_image=None, mask=None):
|
||||
self.model_patch = model_patch
|
||||
self.vae = vae
|
||||
self.image = image
|
||||
self.inpaint_image = inpaint_image
|
||||
self.mask = mask
|
||||
self.strength = strength
|
||||
self.encoded_image = self.encode_latent_cond(image)
|
||||
self.encoded_image_size = (image.shape[1], image.shape[2])
|
||||
self.temp_data = None
|
||||
|
||||
def encode_latent_cond(self, image):
|
||||
latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(image))
|
||||
return latent_image
|
||||
def encode_latent_cond(self, control_image, inpaint_image=None):
|
||||
latent_image = comfy.latent_formats.Flux().process_in(self.vae.encode(control_image))
|
||||
if self.model_patch.model.additional_in_dim > 0:
|
||||
if self.mask is None:
|
||||
mask_ = torch.zeros_like(latent_image)[:, :1]
|
||||
else:
|
||||
mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none")
|
||||
if inpaint_image is None:
|
||||
inpaint_image = torch.ones_like(control_image) * 0.5
|
||||
|
||||
inpaint_image_latent = comfy.latent_formats.Flux().process_in(self.vae.encode(inpaint_image))
|
||||
|
||||
return torch.cat([latent_image, mask_, inpaint_image_latent], dim=1)
|
||||
else:
|
||||
return latent_image
|
||||
|
||||
def __call__(self, kwargs):
|
||||
x = kwargs.get("x")
|
||||
img = kwargs.get("img")
|
||||
img_input = kwargs.get("img_input")
|
||||
txt = kwargs.get("txt")
|
||||
pe = kwargs.get("pe")
|
||||
vec = kwargs.get("vec")
|
||||
block_index = kwargs.get("block_index")
|
||||
block_type = kwargs.get("block_type", "")
|
||||
spacial_compression = self.vae.spacial_compression_encode()
|
||||
if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression):
|
||||
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
|
||||
inpaint_scaled = None
|
||||
if self.inpaint_image is not None:
|
||||
inpaint_scaled = comfy.utils.common_upscale(self.inpaint_image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center").movedim(1, -1)
|
||||
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
|
||||
self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1))
|
||||
self.encoded_image = self.encode_latent_cond(image_scaled.movedim(1, -1), inpaint_scaled)
|
||||
self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1])
|
||||
comfy.model_management.load_models_gpu(loaded_models)
|
||||
|
||||
cnet_index = (block_index // 5)
|
||||
cnet_index_float = (block_index / 5)
|
||||
cnet_blocks = self.model_patch.model.n_control_layers
|
||||
div = round(30 / cnet_blocks)
|
||||
|
||||
cnet_index = (block_index // div)
|
||||
cnet_index_float = (block_index / div)
|
||||
|
||||
kwargs.pop("img") # we do ops in place
|
||||
kwargs.pop("txt")
|
||||
|
||||
cnet_blocks = self.model_patch.model.n_control_layers
|
||||
if cnet_index_float > (cnet_blocks - 1):
|
||||
self.temp_data = None
|
||||
return kwargs
|
||||
|
||||
if self.temp_data is None or self.temp_data[0] > cnet_index:
|
||||
self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec)))
|
||||
if block_type == "noise_refiner":
|
||||
self.temp_data = (-3, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec)))
|
||||
else:
|
||||
self.temp_data = (-1, (None, self.model_patch.model(txt, self.encoded_image.to(img.dtype), pe, vec)))
|
||||
|
||||
while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks:
|
||||
if block_type == "noise_refiner":
|
||||
next_layer = self.temp_data[0] + 1
|
||||
self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img[:, :self.temp_data[1][1].shape[1]], None, pe, vec))
|
||||
self.temp_data = (next_layer, self.model_patch.model.forward_noise_refiner_block(block_index, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec))
|
||||
if self.temp_data[1][0] is not None:
|
||||
img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength)
|
||||
else:
|
||||
while self.temp_data[0] < cnet_index and (self.temp_data[0] + 1) < cnet_blocks:
|
||||
next_layer = self.temp_data[0] + 1
|
||||
self.temp_data = (next_layer, self.model_patch.model.forward_control_block(next_layer, self.temp_data[1][1], img_input[:, :self.temp_data[1][1].shape[1]], None, pe, vec))
|
||||
|
||||
if cnet_index_float == self.temp_data[0]:
|
||||
img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength)
|
||||
if cnet_blocks == self.temp_data[0] + 1:
|
||||
self.temp_data = None
|
||||
if cnet_index_float == self.temp_data[0]:
|
||||
img[:, :self.temp_data[1][0].shape[1]] += (self.temp_data[1][0] * self.strength)
|
||||
if cnet_blocks == self.temp_data[0] + 1:
|
||||
self.temp_data = None
|
||||
|
||||
return kwargs
|
||||
|
||||
@@ -386,7 +422,9 @@ class QwenImageDiffsynthControlnet:
|
||||
mask = 1.0 - mask
|
||||
|
||||
if isinstance(model_patch.model, comfy.ldm.lumina.controlnet.ZImage_Control):
|
||||
model_patched.set_model_double_block_patch(ZImageControlPatch(model_patch, vae, image, strength))
|
||||
patch = ZImageControlPatch(model_patch, vae, image, strength, mask=mask)
|
||||
model_patched.set_model_noise_refiner_patch(patch)
|
||||
model_patched.set_model_double_block_patch(patch)
|
||||
else:
|
||||
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask))
|
||||
return (model_patched,)
|
||||
|
||||
Reference in New Issue
Block a user