Hack to make zimage work in fp16. (#11057)

This commit is contained in:
comfyanonymous
2025-12-02 14:11:58 -08:00
committed by GitHub
parent 33d6aec3b7
commit daaceac769
2 changed files with 13 additions and 7 deletions

View File

@@ -22,6 +22,10 @@ def modulate(x, scale):
# Core NextDiT Model #
#############################################################################
def clamp_fp16(x):
if x.dtype == torch.float16:
return torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class JointAttention(nn.Module):
"""Multi-head attention module."""
@@ -169,7 +173,7 @@ class FeedForward(nn.Module):
# @torch.compile
def _forward_silu_gating(self, x1, x3):
return F.silu(x1) * x3
return clamp_fp16(F.silu(x1) * x3)
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
@@ -273,27 +277,27 @@ class JointTransformerBlock(nn.Module):
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
self.attention(
clamp_fp16(self.attention(
modulate(self.attention_norm1(x), scale_msa),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
))
)
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
self.feed_forward(
clamp_fp16(self.feed_forward(
modulate(self.ffn_norm1(x), scale_mlp),
)
))
)
else:
assert adaln_input is None
x = x + self.attention_norm2(
self.attention(
clamp_fp16(self.attention(
self.attention_norm1(x),
x_mask,
freqs_cis,
transformer_options=transformer_options,
)
))
)
x = x + self.ffn_norm2(
self.feed_forward(