mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-03 06:57:34 +00:00
Mark widgets as advanced across core, comfy_extras, and comfy_api_nodes to support the new collapsible advanced inputs section in the frontend. Changes: - 267 advanced markers in comfy_extras/ - 162 advanced markers in comfy_api_nodes/ - All files pass python3 -m py_compile verification Widgets marked advanced (hidden by default): - Scheduler internals: sigma_max, sigma_min, rho, mu, beta, alpha - Sampler internals: eta, s_noise, order, rtol, atol, h_init, pcoeff, etc. - Memory optimization: tile_size, overlap, temporal_size, temporal_overlap - Pipeline controls: add_noise, start_at_step, end_at_step - Timing controls: start_percent, end_percent - Layer selection: stop_at_clip_layer, layers, block_number - Video encoding: codec, crf, format - Device/dtype: device, noise_device, dtype, weight_dtype Widgets kept basic (always visible): - Core params: strength, steps, cfg, denoise, seed, width, height - Model selectors: ckpt_name, lora_name, vae_name, sampler_name - Common controls: upscale_method, crop, batch_size, fps, opacity Related: frontend PR #11939 Amp-Thread-ID: https://ampcode.com/threads/T-019c1734-6b61-702e-b333-f02c399963fc
676 lines
29 KiB
Python
676 lines
29 KiB
Python
from typing_extensions import override
|
||
import numpy as np
|
||
import torch
|
||
import torch.nn.functional as F
|
||
from PIL import Image
|
||
import math
|
||
from enum import Enum
|
||
from typing import TypedDict, Literal
|
||
|
||
import comfy.utils
|
||
import comfy.model_management
|
||
from comfy_extras.nodes_latent import reshape_latent_to
|
||
import node_helpers
|
||
from comfy_api.latest import ComfyExtension, io
|
||
from nodes import MAX_RESOLUTION
|
||
|
||
class Blend(io.ComfyNode):
|
||
@classmethod
|
||
def define_schema(cls):
|
||
return io.Schema(
|
||
node_id="ImageBlend",
|
||
category="image/postprocessing",
|
||
inputs=[
|
||
io.Image.Input("image1"),
|
||
io.Image.Input("image2"),
|
||
io.Float.Input("blend_factor", default=0.5, min=0.0, max=1.0, step=0.01),
|
||
io.Combo.Input("blend_mode", options=["normal", "multiply", "screen", "overlay", "soft_light", "difference"]),
|
||
],
|
||
outputs=[
|
||
io.Image.Output(),
|
||
],
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str) -> io.NodeOutput:
|
||
image1, image2 = node_helpers.image_alpha_fix(image1, image2)
|
||
image2 = image2.to(image1.device)
|
||
if image1.shape != image2.shape:
|
||
image2 = image2.permute(0, 3, 1, 2)
|
||
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
|
||
image2 = image2.permute(0, 2, 3, 1)
|
||
|
||
blended_image = cls.blend_mode(image1, image2, blend_mode)
|
||
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
|
||
blended_image = torch.clamp(blended_image, 0, 1)
|
||
return io.NodeOutput(blended_image)
|
||
|
||
@classmethod
|
||
def blend_mode(cls, img1, img2, mode):
|
||
if mode == "normal":
|
||
return img2
|
||
elif mode == "multiply":
|
||
return img1 * img2
|
||
elif mode == "screen":
|
||
return 1 - (1 - img1) * (1 - img2)
|
||
elif mode == "overlay":
|
||
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
|
||
elif mode == "soft_light":
|
||
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (cls.g(img1) - img1))
|
||
elif mode == "difference":
|
||
return img1 - img2
|
||
raise ValueError(f"Unsupported blend mode: {mode}")
|
||
|
||
@classmethod
|
||
def g(cls, x):
|
||
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
|
||
|
||
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
|
||
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
|
||
d = torch.sqrt(x * x + y * y)
|
||
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
||
return g / g.sum()
|
||
|
||
class Blur(io.ComfyNode):
|
||
@classmethod
|
||
def define_schema(cls):
|
||
return io.Schema(
|
||
node_id="ImageBlur",
|
||
category="image/postprocessing",
|
||
inputs=[
|
||
io.Image.Input("image"),
|
||
io.Int.Input("blur_radius", default=1, min=1, max=31, step=1),
|
||
io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.1),
|
||
],
|
||
outputs=[
|
||
io.Image.Output(),
|
||
],
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, image: torch.Tensor, blur_radius: int, sigma: float) -> io.NodeOutput:
|
||
if blur_radius == 0:
|
||
return io.NodeOutput(image)
|
||
|
||
image = image.to(comfy.model_management.get_torch_device())
|
||
batch_size, height, width, channels = image.shape
|
||
|
||
kernel_size = blur_radius * 2 + 1
|
||
kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
|
||
|
||
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
||
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
|
||
blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
|
||
blurred = blurred.permute(0, 2, 3, 1)
|
||
|
||
return io.NodeOutput(blurred.to(comfy.model_management.intermediate_device()))
|
||
|
||
|
||
class Quantize(io.ComfyNode):
|
||
@classmethod
|
||
def define_schema(cls):
|
||
return io.Schema(
|
||
node_id="ImageQuantize",
|
||
category="image/postprocessing",
|
||
inputs=[
|
||
io.Image.Input("image"),
|
||
io.Int.Input("colors", default=256, min=1, max=256, step=1),
|
||
io.Combo.Input("dither", options=["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"]),
|
||
],
|
||
outputs=[
|
||
io.Image.Output(),
|
||
],
|
||
)
|
||
|
||
@staticmethod
|
||
def bayer(im, pal_im, order):
|
||
def normalized_bayer_matrix(n):
|
||
if n == 0:
|
||
return np.zeros((1,1), "float32")
|
||
else:
|
||
q = 4 ** n
|
||
m = q * normalized_bayer_matrix(n - 1)
|
||
return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q
|
||
|
||
num_colors = len(pal_im.getpalette()) // 3
|
||
spread = 2 * 256 / num_colors
|
||
bayer_n = int(math.log2(order))
|
||
bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)
|
||
|
||
result = torch.from_numpy(np.array(im).astype(np.float32))
|
||
tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
|
||
th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
|
||
tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
|
||
result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
|
||
result = result.to(dtype=torch.uint8)
|
||
|
||
im = Image.fromarray(result.cpu().numpy())
|
||
im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
|
||
return im
|
||
|
||
@classmethod
|
||
def execute(cls, image: torch.Tensor, colors: int, dither: str) -> io.NodeOutput:
|
||
batch_size, height, width, _ = image.shape
|
||
result = torch.zeros_like(image)
|
||
|
||
for b in range(batch_size):
|
||
im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')
|
||
|
||
pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
|
||
|
||
if dither == "none":
|
||
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
|
||
elif dither == "floyd-steinberg":
|
||
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
|
||
elif dither.startswith("bayer"):
|
||
order = int(dither.split('-')[-1])
|
||
quantized_image = Quantize.bayer(im, pal_im, order)
|
||
|
||
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
|
||
result[b] = quantized_array
|
||
|
||
return io.NodeOutput(result)
|
||
|
||
class Sharpen(io.ComfyNode):
|
||
@classmethod
|
||
def define_schema(cls):
|
||
return io.Schema(
|
||
node_id="ImageSharpen",
|
||
category="image/postprocessing",
|
||
inputs=[
|
||
io.Image.Input("image"),
|
||
io.Int.Input("sharpen_radius", default=1, min=1, max=31, step=1, advanced=True),
|
||
io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.01, advanced=True),
|
||
io.Float.Input("alpha", default=1.0, min=0.0, max=5.0, step=0.01, advanced=True),
|
||
],
|
||
outputs=[
|
||
io.Image.Output(),
|
||
],
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float) -> io.NodeOutput:
|
||
if sharpen_radius == 0:
|
||
return io.NodeOutput(image)
|
||
|
||
batch_size, height, width, channels = image.shape
|
||
image = image.to(comfy.model_management.get_torch_device())
|
||
|
||
kernel_size = sharpen_radius * 2 + 1
|
||
kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10)
|
||
kernel = kernel.to(dtype=image.dtype)
|
||
center = kernel_size // 2
|
||
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
|
||
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
|
||
|
||
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
||
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
|
||
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
|
||
sharpened = sharpened.permute(0, 2, 3, 1)
|
||
|
||
result = torch.clamp(sharpened, 0, 1)
|
||
|
||
return io.NodeOutput(result.to(comfy.model_management.intermediate_device()))
|
||
|
||
class ImageScaleToTotalPixels(io.ComfyNode):
|
||
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
||
crop_methods = ["disabled", "center"]
|
||
|
||
@classmethod
|
||
def define_schema(cls):
|
||
return io.Schema(
|
||
node_id="ImageScaleToTotalPixels",
|
||
category="image/upscaling",
|
||
inputs=[
|
||
io.Image.Input("image"),
|
||
io.Combo.Input("upscale_method", options=cls.upscale_methods),
|
||
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
|
||
io.Int.Input("resolution_steps", default=1, min=1, max=256, advanced=True),
|
||
],
|
||
outputs=[
|
||
io.Image.Output(),
|
||
],
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, image, upscale_method, megapixels, resolution_steps) -> io.NodeOutput:
|
||
samples = image.movedim(-1,1)
|
||
total = megapixels * 1024 * 1024
|
||
|
||
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
||
width = round(samples.shape[3] * scale_by / resolution_steps) * resolution_steps
|
||
height = round(samples.shape[2] * scale_by / resolution_steps) * resolution_steps
|
||
|
||
s = comfy.utils.common_upscale(samples, int(width), int(height), upscale_method, "disabled")
|
||
s = s.movedim(1,-1)
|
||
return io.NodeOutput(s)
|
||
|
||
class ResizeType(str, Enum):
|
||
SCALE_BY = "scale by multiplier"
|
||
SCALE_DIMENSIONS = "scale dimensions"
|
||
SCALE_LONGER_DIMENSION = "scale longer dimension"
|
||
SCALE_SHORTER_DIMENSION = "scale shorter dimension"
|
||
SCALE_WIDTH = "scale width"
|
||
SCALE_HEIGHT = "scale height"
|
||
SCALE_TOTAL_PIXELS = "scale total pixels"
|
||
MATCH_SIZE = "match size"
|
||
SCALE_TO_MULTIPLE = "scale to multiple"
|
||
|
||
def is_image(input: torch.Tensor) -> bool:
|
||
# images have 4 dimensions: [batch, height, width, channels]
|
||
# masks have 3 dimensions: [batch, height, width]
|
||
return len(input.shape) == 4
|
||
|
||
def init_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor:
|
||
if is_type_image:
|
||
input = input.movedim(-1, 1)
|
||
else:
|
||
input = input.unsqueeze(1)
|
||
return input
|
||
|
||
def finalize_image_mask_input(input: torch.Tensor, is_type_image: bool) -> torch.Tensor:
|
||
if is_type_image:
|
||
input = input.movedim(1, -1)
|
||
else:
|
||
input = input.squeeze(1)
|
||
return input
|
||
|
||
def scale_by(input: torch.Tensor, multiplier: float, scale_method: str) -> torch.Tensor:
|
||
is_type_image = is_image(input)
|
||
input = init_image_mask_input(input, is_type_image)
|
||
width = round(input.shape[-1] * multiplier)
|
||
height = round(input.shape[-2] * multiplier)
|
||
|
||
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
|
||
input = finalize_image_mask_input(input, is_type_image)
|
||
return input
|
||
|
||
def scale_dimensions(input: torch.Tensor, width: int, height: int, scale_method: str, crop: str="disabled") -> torch.Tensor:
|
||
if width == 0 and height == 0:
|
||
return input
|
||
is_type_image = is_image(input)
|
||
input = init_image_mask_input(input, is_type_image)
|
||
|
||
if width == 0:
|
||
width = max(1, round(input.shape[-1] * height / input.shape[-2]))
|
||
elif height == 0:
|
||
height = max(1, round(input.shape[-2] * width / input.shape[-1]))
|
||
|
||
input = comfy.utils.common_upscale(input, width, height, scale_method, crop)
|
||
input = finalize_image_mask_input(input, is_type_image)
|
||
return input
|
||
|
||
def scale_longer_dimension(input: torch.Tensor, longer_size: int, scale_method: str) -> torch.Tensor:
|
||
is_type_image = is_image(input)
|
||
input = init_image_mask_input(input, is_type_image)
|
||
width = input.shape[-1]
|
||
height = input.shape[-2]
|
||
|
||
if height > width:
|
||
width = round((width / height) * longer_size)
|
||
height = longer_size
|
||
elif width > height:
|
||
height = round((height / width) * longer_size)
|
||
width = longer_size
|
||
else:
|
||
height = longer_size
|
||
width = longer_size
|
||
|
||
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
|
||
input = finalize_image_mask_input(input, is_type_image)
|
||
return input
|
||
|
||
def scale_shorter_dimension(input: torch.Tensor, shorter_size: int, scale_method: str) -> torch.Tensor:
|
||
is_type_image = is_image(input)
|
||
input = init_image_mask_input(input, is_type_image)
|
||
width = input.shape[-1]
|
||
height = input.shape[-2]
|
||
|
||
if height < width:
|
||
width = round((width / height) * shorter_size)
|
||
height = shorter_size
|
||
elif width < height:
|
||
height = round((height / width) * shorter_size)
|
||
width = shorter_size
|
||
else:
|
||
height = shorter_size
|
||
width = shorter_size
|
||
|
||
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
|
||
input = finalize_image_mask_input(input, is_type_image)
|
||
return input
|
||
|
||
def scale_total_pixels(input: torch.Tensor, megapixels: float, scale_method: str) -> torch.Tensor:
|
||
is_type_image = is_image(input)
|
||
input = init_image_mask_input(input, is_type_image)
|
||
total = int(megapixels * 1024 * 1024)
|
||
|
||
scale_by = math.sqrt(total / (input.shape[-1] * input.shape[-2]))
|
||
width = round(input.shape[-1] * scale_by)
|
||
height = round(input.shape[-2] * scale_by)
|
||
|
||
input = comfy.utils.common_upscale(input, width, height, scale_method, "disabled")
|
||
input = finalize_image_mask_input(input, is_type_image)
|
||
return input
|
||
|
||
def scale_match_size(input: torch.Tensor, match: torch.Tensor, scale_method: str, crop: str) -> torch.Tensor:
|
||
is_type_image = is_image(input)
|
||
input = init_image_mask_input(input, is_type_image)
|
||
match = init_image_mask_input(match, is_image(match))
|
||
|
||
width = match.shape[-1]
|
||
height = match.shape[-2]
|
||
input = comfy.utils.common_upscale(input, width, height, scale_method, crop)
|
||
input = finalize_image_mask_input(input, is_type_image)
|
||
return input
|
||
|
||
def scale_to_multiple_cover(input: torch.Tensor, multiple: int, scale_method: str) -> torch.Tensor:
|
||
if multiple <= 1:
|
||
return input
|
||
is_type_image = is_image(input)
|
||
if is_type_image:
|
||
_, height, width, _ = input.shape
|
||
else:
|
||
_, height, width = input.shape
|
||
target_w = (width // multiple) * multiple
|
||
target_h = (height // multiple) * multiple
|
||
if target_w == 0 or target_h == 0:
|
||
return input
|
||
if target_w == width and target_h == height:
|
||
return input
|
||
s_w = target_w / width
|
||
s_h = target_h / height
|
||
if s_w >= s_h:
|
||
scaled_w = target_w
|
||
scaled_h = int(math.ceil(height * s_w))
|
||
if scaled_h < target_h:
|
||
scaled_h = target_h
|
||
else:
|
||
scaled_h = target_h
|
||
scaled_w = int(math.ceil(width * s_h))
|
||
if scaled_w < target_w:
|
||
scaled_w = target_w
|
||
input = init_image_mask_input(input, is_type_image)
|
||
input = comfy.utils.common_upscale(input, scaled_w, scaled_h, scale_method, "disabled")
|
||
input = finalize_image_mask_input(input, is_type_image)
|
||
x0 = (scaled_w - target_w) // 2
|
||
y0 = (scaled_h - target_h) // 2
|
||
x1 = x0 + target_w
|
||
y1 = y0 + target_h
|
||
if is_type_image:
|
||
return input[:, y0:y1, x0:x1, :]
|
||
return input[:, y0:y1, x0:x1]
|
||
|
||
class ResizeImageMaskNode(io.ComfyNode):
|
||
scale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
||
crop_methods = ["disabled", "center"]
|
||
|
||
class ResizeTypedDict(TypedDict):
|
||
resize_type: ResizeType
|
||
scale_method: Literal["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
||
crop: Literal["disabled", "center"]
|
||
multiplier: float
|
||
width: int
|
||
height: int
|
||
longer_size: int
|
||
shorter_size: int
|
||
megapixels: float
|
||
multiple: int
|
||
|
||
@classmethod
|
||
def define_schema(cls):
|
||
template = io.MatchType.Template("input_type", [io.Image, io.Mask])
|
||
crop_combo = io.Combo.Input(
|
||
"crop",
|
||
options=cls.crop_methods,
|
||
default="center",
|
||
tooltip="How to handle aspect ratio mismatch: 'disabled' stretches to fit, 'center' crops to maintain aspect ratio.",
|
||
)
|
||
return io.Schema(
|
||
node_id="ResizeImageMaskNode",
|
||
display_name="Resize Image/Mask",
|
||
description="Resize an image or mask using various scaling methods.",
|
||
category="transform",
|
||
search_aliases=["resize", "resize image", "resize mask", "scale", "scale image", "scale mask", "image resize", "change size", "dimensions", "shrink", "enlarge"],
|
||
inputs=[
|
||
io.MatchType.Input("input", template=template),
|
||
io.DynamicCombo.Input(
|
||
"resize_type",
|
||
tooltip="Select how to resize: by exact dimensions, scale factor, matching another image, etc.",
|
||
options=[
|
||
io.DynamicCombo.Option(ResizeType.SCALE_DIMENSIONS, [
|
||
io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target width in pixels. Set to 0 to auto-calculate from height while preserving aspect ratio."),
|
||
io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target height in pixels. Set to 0 to auto-calculate from width while preserving aspect ratio."),
|
||
crop_combo,
|
||
]),
|
||
io.DynamicCombo.Option(ResizeType.SCALE_BY, [
|
||
io.Float.Input("multiplier", default=1.00, min=0.01, max=8.0, step=0.01, tooltip="Scale factor (e.g., 2.0 doubles size, 0.5 halves size)."),
|
||
]),
|
||
io.DynamicCombo.Option(ResizeType.SCALE_LONGER_DIMENSION, [
|
||
io.Int.Input("longer_size", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="The longer edge will be resized to this value. Aspect ratio is preserved."),
|
||
]),
|
||
io.DynamicCombo.Option(ResizeType.SCALE_SHORTER_DIMENSION, [
|
||
io.Int.Input("shorter_size", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="The shorter edge will be resized to this value. Aspect ratio is preserved."),
|
||
]),
|
||
io.DynamicCombo.Option(ResizeType.SCALE_WIDTH, [
|
||
io.Int.Input("width", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target width in pixels. Height auto-adjusts to preserve aspect ratio."),
|
||
]),
|
||
io.DynamicCombo.Option(ResizeType.SCALE_HEIGHT, [
|
||
io.Int.Input("height", default=512, min=0, max=MAX_RESOLUTION, step=1, tooltip="Target height in pixels. Width auto-adjusts to preserve aspect ratio."),
|
||
]),
|
||
io.DynamicCombo.Option(ResizeType.SCALE_TOTAL_PIXELS, [
|
||
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01, tooltip="Target total megapixels (e.g., 1.0 ≈ 1024×1024). Aspect ratio is preserved."),
|
||
]),
|
||
io.DynamicCombo.Option(ResizeType.MATCH_SIZE, [
|
||
io.MultiType.Input("match", [io.Image, io.Mask], tooltip="Resize input to match the dimensions of this reference image or mask."),
|
||
crop_combo,
|
||
]),
|
||
io.DynamicCombo.Option(ResizeType.SCALE_TO_MULTIPLE, [
|
||
io.Int.Input("multiple", default=8, min=1, max=MAX_RESOLUTION, step=1, tooltip="Resize so width and height are divisible by this number. Useful for latent alignment (e.g., 8 or 64)."),
|
||
]),
|
||
],
|
||
),
|
||
io.Combo.Input(
|
||
"scale_method",
|
||
options=cls.scale_methods,
|
||
default="area",
|
||
tooltip="Interpolation algorithm. 'area' is best for downscaling, 'lanczos' for upscaling, 'nearest-exact' for pixel art.",
|
||
),
|
||
],
|
||
outputs=[io.MatchType.Output(template=template, display_name="resized")]
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, input: io.Image.Type | io.Mask.Type, scale_method: io.Combo.Type, resize_type: ResizeTypedDict) -> io.NodeOutput:
|
||
selected_type = resize_type["resize_type"]
|
||
if selected_type == ResizeType.SCALE_BY:
|
||
return io.NodeOutput(scale_by(input, resize_type["multiplier"], scale_method))
|
||
elif selected_type == ResizeType.SCALE_DIMENSIONS:
|
||
return io.NodeOutput(scale_dimensions(input, resize_type["width"], resize_type["height"], scale_method, resize_type["crop"]))
|
||
elif selected_type == ResizeType.SCALE_LONGER_DIMENSION:
|
||
return io.NodeOutput(scale_longer_dimension(input, resize_type["longer_size"], scale_method))
|
||
elif selected_type == ResizeType.SCALE_SHORTER_DIMENSION:
|
||
return io.NodeOutput(scale_shorter_dimension(input, resize_type["shorter_size"], scale_method))
|
||
elif selected_type == ResizeType.SCALE_WIDTH:
|
||
return io.NodeOutput(scale_dimensions(input, resize_type["width"], 0, scale_method))
|
||
elif selected_type == ResizeType.SCALE_HEIGHT:
|
||
return io.NodeOutput(scale_dimensions(input, 0, resize_type["height"], scale_method))
|
||
elif selected_type == ResizeType.SCALE_TOTAL_PIXELS:
|
||
return io.NodeOutput(scale_total_pixels(input, resize_type["megapixels"], scale_method))
|
||
elif selected_type == ResizeType.MATCH_SIZE:
|
||
return io.NodeOutput(scale_match_size(input, resize_type["match"], scale_method, resize_type["crop"]))
|
||
elif selected_type == ResizeType.SCALE_TO_MULTIPLE:
|
||
return io.NodeOutput(scale_to_multiple_cover(input, resize_type["multiple"], scale_method))
|
||
raise ValueError(f"Unsupported resize type: {selected_type}")
|
||
|
||
def batch_images(images: list[torch.Tensor]) -> torch.Tensor | None:
|
||
if len(images) == 0:
|
||
return None
|
||
# first, get the max channels count
|
||
max_channels = max(image.shape[-1] for image in images)
|
||
# then, pad all images to have the same channels count
|
||
padded_images: list[torch.Tensor] = []
|
||
for image in images:
|
||
if image.shape[-1] < max_channels:
|
||
padded_images.append(torch.nn.functional.pad(image, (0,1), mode='constant', value=1.0))
|
||
else:
|
||
padded_images.append(image)
|
||
# resize all images to be the same size as the first image
|
||
resized_images: list[torch.Tensor] = []
|
||
first_image_shape = padded_images[0].shape
|
||
for image in padded_images:
|
||
if image.shape[1:] != first_image_shape[1:]:
|
||
resized_images.append(comfy.utils.common_upscale(image.movedim(-1,1), first_image_shape[2], first_image_shape[1], "bilinear", "center").movedim(1,-1))
|
||
else:
|
||
resized_images.append(image)
|
||
# batch the images in the format [b, h, w, c]
|
||
return torch.cat(resized_images, dim=0)
|
||
|
||
def batch_masks(masks: list[torch.Tensor]) -> torch.Tensor | None:
|
||
if len(masks) == 0:
|
||
return None
|
||
# resize all masks to be the same size as the first mask
|
||
resized_masks: list[torch.Tensor] = []
|
||
first_mask_shape = masks[0].shape
|
||
for mask in masks:
|
||
if mask.shape[1:] != first_mask_shape[1:]:
|
||
mask = init_image_mask_input(mask, is_type_image=False)
|
||
mask = comfy.utils.common_upscale(mask, first_mask_shape[2], first_mask_shape[1], "bilinear", "center")
|
||
resized_masks.append(finalize_image_mask_input(mask, is_type_image=False))
|
||
else:
|
||
resized_masks.append(mask)
|
||
# batch the masks in the format [b, h, w]
|
||
return torch.cat(resized_masks, dim=0)
|
||
|
||
def batch_latents(latents: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor] | None:
|
||
if len(latents) == 0:
|
||
return None
|
||
samples_out = latents[0].copy()
|
||
samples_out["batch_index"] = []
|
||
first_samples = latents[0]["samples"]
|
||
tensors: list[torch.Tensor] = []
|
||
for latent in latents:
|
||
# first, deal with latent tensors
|
||
tensors.append(reshape_latent_to(first_samples.shape, latent["samples"], repeat_batch=False))
|
||
# next, deal with batch_index
|
||
samples_out["batch_index"].extend(latent.get("batch_index", [x for x in range(0, latent["samples"].shape[0])]))
|
||
samples_out["samples"] = torch.cat(tensors, dim=0)
|
||
return samples_out
|
||
|
||
class BatchImagesNode(io.ComfyNode):
|
||
@classmethod
|
||
def define_schema(cls):
|
||
autogrow_template = io.Autogrow.TemplatePrefix(io.Image.Input("image"), prefix="image", min=2, max=50)
|
||
return io.Schema(
|
||
node_id="BatchImagesNode",
|
||
display_name="Batch Images",
|
||
category="image",
|
||
search_aliases=["batch", "image batch", "batch images", "combine images", "merge images", "stack images"],
|
||
inputs=[
|
||
io.Autogrow.Input("images", template=autogrow_template)
|
||
],
|
||
outputs=[
|
||
io.Image.Output()
|
||
]
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, images: io.Autogrow.Type) -> io.NodeOutput:
|
||
return io.NodeOutput(batch_images(list(images.values())))
|
||
|
||
class BatchMasksNode(io.ComfyNode):
|
||
@classmethod
|
||
def define_schema(cls):
|
||
autogrow_template = io.Autogrow.TemplatePrefix(io.Mask.Input("mask"), prefix="mask", min=2, max=50)
|
||
return io.Schema(
|
||
node_id="BatchMasksNode",
|
||
search_aliases=["combine masks", "stack masks", "merge masks"],
|
||
display_name="Batch Masks",
|
||
category="mask",
|
||
inputs=[
|
||
io.Autogrow.Input("masks", template=autogrow_template)
|
||
],
|
||
outputs=[
|
||
io.Mask.Output()
|
||
]
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, masks: io.Autogrow.Type) -> io.NodeOutput:
|
||
return io.NodeOutput(batch_masks(list(masks.values())))
|
||
|
||
class BatchLatentsNode(io.ComfyNode):
|
||
@classmethod
|
||
def define_schema(cls):
|
||
autogrow_template = io.Autogrow.TemplatePrefix(io.Latent.Input("latent"), prefix="latent", min=2, max=50)
|
||
return io.Schema(
|
||
node_id="BatchLatentsNode",
|
||
search_aliases=["combine latents", "stack latents", "merge latents"],
|
||
display_name="Batch Latents",
|
||
category="latent",
|
||
inputs=[
|
||
io.Autogrow.Input("latents", template=autogrow_template)
|
||
],
|
||
outputs=[
|
||
io.Latent.Output()
|
||
]
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, latents: io.Autogrow.Type) -> io.NodeOutput:
|
||
return io.NodeOutput(batch_latents(list(latents.values())))
|
||
|
||
class BatchImagesMasksLatentsNode(io.ComfyNode):
|
||
@classmethod
|
||
def define_schema(cls):
|
||
matchtype_template = io.MatchType.Template("input", allowed_types=[io.Image, io.Mask, io.Latent])
|
||
autogrow_template = io.Autogrow.TemplatePrefix(
|
||
io.MatchType.Input("input", matchtype_template),
|
||
prefix="input", min=1, max=50)
|
||
return io.Schema(
|
||
node_id="BatchImagesMasksLatentsNode",
|
||
search_aliases=["combine batch", "merge batch", "stack inputs"],
|
||
display_name="Batch Images/Masks/Latents",
|
||
category="util",
|
||
inputs=[
|
||
io.Autogrow.Input("inputs", template=autogrow_template)
|
||
],
|
||
outputs=[
|
||
io.MatchType.Output(id=None, template=matchtype_template)
|
||
]
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, inputs: io.Autogrow.Type) -> io.NodeOutput:
|
||
batched = None
|
||
values = list(inputs.values())
|
||
# latents
|
||
if isinstance(values[0], dict):
|
||
batched = batch_latents(values)
|
||
# images
|
||
elif is_image(values[0]):
|
||
batched = batch_images(values)
|
||
# masks
|
||
else:
|
||
batched = batch_masks(values)
|
||
return io.NodeOutput(batched)
|
||
|
||
class PostProcessingExtension(ComfyExtension):
|
||
@override
|
||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||
return [
|
||
Blend,
|
||
Blur,
|
||
Quantize,
|
||
Sharpen,
|
||
ImageScaleToTotalPixels,
|
||
ResizeImageMaskNode,
|
||
BatchImagesNode,
|
||
BatchMasksNode,
|
||
BatchLatentsNode,
|
||
# BatchImagesMasksLatentsNode,
|
||
]
|
||
|
||
async def comfy_entrypoint() -> PostProcessingExtension:
|
||
return PostProcessingExtension()
|