Files
ComfyUI/comfy_api_nodes/nodes_magnific.py
2026-01-21 18:37:04 +02:00

890 lines
36 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.magnific import (
ImageRelightAdvancedSettingsRequest,
ImageRelightRequest,
ImageSkinEnhancerCreativeRequest,
ImageSkinEnhancerFaithfulRequest,
ImageSkinEnhancerFlexibleRequest,
ImageStyleTransferRequest,
ImageUpscalerCreativeRequest,
ImageUpscalerPrecisionV2Request,
InputAdvancedSettings,
InputPortraitMode,
InputSkinEnhancerMode,
TaskResponse,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
downscale_image_tensor,
get_image_dimensions,
get_number_of_images,
poll_op,
sync_op,
upload_images_to_comfyapi,
validate_image_aspect_ratio,
validate_image_dimensions,
)
class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MagnificImageUpscalerCreativeNode",
display_name="Magnific Image Upscale (Creative)",
category="api node/image/Magnific",
description="Promptguided enhancement, stylization, and 2x/4x/8x/16x upscaling. "
"Maximum output: 25.3 megapixels.",
inputs=[
IO.Image.Input("image"),
IO.String.Input("prompt", multiline=True, default=""),
IO.Combo.Input("scale_factor", options=["2x", "4x", "8x", "16x"]),
IO.Combo.Input(
"optimized_for",
options=[
"standard",
"soft_portraits",
"hard_portraits",
"art_n_illustration",
"videogame_assets",
"nature_n_landscapes",
"films_n_photography",
"3d_renders",
"science_fiction_n_horror",
],
),
IO.Int.Input("creativity", min=-10, max=10, default=0, display_mode=IO.NumberDisplay.slider),
IO.Int.Input(
"hdr",
min=-10,
max=10,
default=0,
tooltip="The level of definition and detail.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"resemblance",
min=-10,
max=10,
default=0,
tooltip="The level of resemblance to the original image.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"fractality",
min=-10,
max=10,
default=0,
tooltip="The strength of the prompt and intricacy per square pixel.",
display_mode=IO.NumberDisplay.slider,
),
IO.Combo.Input(
"engine",
options=["automatic", "magnific_illusio", "magnific_sharpy", "magnific_sparkle"],
),
IO.Boolean.Input(
"auto_downscale",
default=False,
tooltip="Automatically downscale input image if output would exceed maximum pixel limit.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
expr="""
(
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
)
""",
),
)
@classmethod
async def execute(
cls,
image: Input.Image,
prompt: str,
scale_factor: str,
optimized_for: str,
creativity: int,
hdr: int,
resemblance: int,
fractality: int,
engine: str,
auto_downscale: bool,
) -> IO.NodeOutput:
if get_number_of_images(image) != 1:
raise ValueError("Exactly one input image is required.")
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
validate_image_dimensions(image, min_height=160, min_width=160)
max_output_pixels = 25_300_000
height, width = get_image_dimensions(image)
requested_scale = int(scale_factor.rstrip("x"))
output_pixels = height * width * requested_scale * requested_scale
if output_pixels > max_output_pixels:
if auto_downscale:
# Find optimal scale factor that doesn't require >2x downscale.
# Server upscales in 2x steps, so aggressive downscaling degrades quality.
input_pixels = width * height
scale = 2
max_input_pixels = max_output_pixels // 4
for candidate in [16, 8, 4, 2]:
if candidate > requested_scale:
continue
scale_output_pixels = input_pixels * candidate * candidate
if scale_output_pixels <= max_output_pixels:
scale = candidate
max_input_pixels = None
break
downscale_ratio = math.sqrt(scale_output_pixels / max_output_pixels)
if downscale_ratio <= 2.0:
scale = candidate
max_input_pixels = max_output_pixels // (candidate * candidate)
break
if max_input_pixels is not None:
image = downscale_image_tensor(image, total_pixels=max_input_pixels)
scale_factor = f"{scale}x"
else:
raise ValueError(
f"Output size ({width * requested_scale}x{height * requested_scale} = {output_pixels:,} pixels) "
f"exceeds maximum allowed size of {max_output_pixels:,} pixels. "
f"Use a smaller input image or lower scale factor."
)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler", method="POST"),
response_model=TaskResponse,
data=ImageUpscalerCreativeRequest(
image=(await upload_images_to_comfyapi(cls, image, max_images=1, total_pixels=None))[0],
scale_factor=scale_factor,
optimized_for=optimized_for,
creativity=creativity,
hdr=hdr,
resemblance=resemblance,
fractality=fractality,
engine=engine,
prompt=prompt if prompt else None,
),
)
final_response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
poll_interval=10.0,
max_poll_attempts=480,
)
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MagnificImageUpscalerPreciseV2Node",
display_name="Magnific Image Upscale (Precise V2)",
category="api node/image/Magnific",
description="High-fidelity upscaling with fine control over sharpness, grain, and detail. "
"Maximum output: 10060×10060 pixels.",
inputs=[
IO.Image.Input("image"),
IO.Combo.Input("scale_factor", options=["2x", "4x", "8x", "16x"]),
IO.Combo.Input(
"flavor",
options=["sublime", "photo", "photo_denoiser"],
tooltip="Processing style: "
"sublime for general use, photo for photographs, photo_denoiser for noisy photos.",
),
IO.Int.Input(
"sharpen",
min=0,
max=100,
default=7,
tooltip="Image sharpness intensity. Higher values increase edge definition and clarity.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"smart_grain",
min=0,
max=100,
default=7,
tooltip="Intelligent grain/texture enhancement to prevent the image from "
"looking too smooth or artificial.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"ultra_detail",
min=0,
max=100,
default=30,
tooltip="Controls fine detail, textures, and micro-details added during upscaling.",
display_mode=IO.NumberDisplay.slider,
),
IO.Boolean.Input(
"auto_downscale",
default=False,
tooltip="Automatically downscale input image if output would exceed maximum resolution.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
expr="""
(
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
)
""",
),
)
@classmethod
async def execute(
cls,
image: Input.Image,
scale_factor: str,
flavor: str,
sharpen: int,
smart_grain: int,
ultra_detail: int,
auto_downscale: bool,
) -> IO.NodeOutput:
if get_number_of_images(image) != 1:
raise ValueError("Exactly one input image is required.")
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
validate_image_dimensions(image, min_height=160, min_width=160)
max_output_dimension = 10060
height, width = get_image_dimensions(image)
requested_scale = int(scale_factor.strip("x"))
output_width = width * requested_scale
output_height = height * requested_scale
if output_width > max_output_dimension or output_height > max_output_dimension:
if auto_downscale:
# Find optimal scale factor that doesn't require >2x downscale.
# Server upscales in 2x steps, so aggressive downscaling degrades quality.
max_dim = max(width, height)
scale = 2
max_input_dim = max_output_dimension // 2
scale_ratio = max_input_dim / max_dim
max_input_pixels = int(width * height * scale_ratio * scale_ratio)
for candidate in [16, 8, 4, 2]:
if candidate > requested_scale:
continue
output_dim = max_dim * candidate
if output_dim <= max_output_dimension:
scale = candidate
max_input_pixels = None
break
downscale_ratio = output_dim / max_output_dimension
if downscale_ratio <= 2.0:
scale = candidate
max_input_dim = max_output_dimension // candidate
scale_ratio = max_input_dim / max_dim
max_input_pixels = int(width * height * scale_ratio * scale_ratio)
break
if max_input_pixels is not None:
image = downscale_image_tensor(image, total_pixels=max_input_pixels)
requested_scale = scale
else:
raise ValueError(
f"Output dimensions ({output_width}x{output_height}) exceed maximum allowed "
f"resolution of {max_output_dimension}x{max_output_dimension} pixels. "
f"Use a smaller input image or lower scale factor."
)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler-precision-v2", method="POST"),
response_model=TaskResponse,
data=ImageUpscalerPrecisionV2Request(
image=(await upload_images_to_comfyapi(cls, image, max_images=1, total_pixels=None))[0],
scale_factor=requested_scale,
flavor=flavor,
sharpen=sharpen,
smart_grain=smart_grain,
ultra_detail=ultra_detail,
),
)
final_response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler-precision-v2/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
poll_interval=10.0,
max_poll_attempts=480,
)
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
class MagnificImageStyleTransferNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MagnificImageStyleTransferNode",
display_name="Magnific Image Style Transfer",
category="api node/image/Magnific",
description="Transfer the style from a reference image to your input image.",
inputs=[
IO.Image.Input("image", tooltip="The image to apply style transfer to."),
IO.Image.Input("reference_image", tooltip="The reference image to extract style from."),
IO.String.Input("prompt", multiline=True, default=""),
IO.Int.Input(
"style_strength",
min=0,
max=100,
default=100,
tooltip="Percentage of style strength.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"structure_strength",
min=0,
max=100,
default=50,
tooltip="Maintains the structure of the original image.",
display_mode=IO.NumberDisplay.slider,
),
IO.Combo.Input(
"flavor",
options=["faithful", "gen_z", "psychedelia", "detaily", "clear", "donotstyle", "donotstyle_sharp"],
tooltip="Style transfer flavor.",
),
IO.Combo.Input(
"engine",
options=[
"balanced",
"definio",
"illusio",
"3d_cartoon",
"colorful_anime",
"caricature",
"real",
"super_real",
"softy",
],
tooltip="Processing engine selection.",
),
IO.DynamicCombo.Input(
"portrait_mode",
options=[
IO.DynamicCombo.Option("disabled", []),
IO.DynamicCombo.Option(
"enabled",
[
IO.Combo.Input(
"portrait_style",
options=["standard", "pop", "super_pop"],
tooltip="Visual style applied to portrait images.",
),
IO.Combo.Input(
"portrait_beautifier",
options=["none", "beautify_face", "beautify_face_max"],
tooltip="Facial beautification intensity on portraits.",
),
],
),
],
tooltip="Enable portrait mode for facial enhancements.",
),
IO.Boolean.Input(
"fixed_generation",
default=True,
tooltip="When disabled, expect each generation to introduce a degree of randomness, "
"leading to more diverse outcomes.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd":0.11}""",
),
)
@classmethod
async def execute(
cls,
image: Input.Image,
reference_image: Input.Image,
prompt: str,
style_strength: int,
structure_strength: int,
flavor: str,
engine: str,
portrait_mode: InputPortraitMode,
fixed_generation: bool,
) -> IO.NodeOutput:
if get_number_of_images(image) != 1:
raise ValueError("Exactly one input image is required.")
if get_number_of_images(reference_image) != 1:
raise ValueError("Exactly one reference image is required.")
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
validate_image_aspect_ratio(reference_image, (1, 3), (3, 1), strict=False)
validate_image_dimensions(image, min_height=160, min_width=160)
validate_image_dimensions(reference_image, min_height=160, min_width=160)
is_portrait = portrait_mode["portrait_mode"] == "enabled"
portrait_style = portrait_mode.get("portrait_style", "standard")
portrait_beautifier = portrait_mode.get("portrait_beautifier", "none")
uploaded_urls = await upload_images_to_comfyapi(cls, [image, reference_image], max_images=2)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-style-transfer", method="POST"),
response_model=TaskResponse,
data=ImageStyleTransferRequest(
image=uploaded_urls[0],
reference_image=uploaded_urls[1],
prompt=prompt if prompt else None,
style_strength=style_strength,
structure_strength=structure_strength,
is_portrait=is_portrait,
portrait_style=portrait_style if is_portrait else None,
portrait_beautifier=portrait_beautifier if is_portrait and portrait_beautifier != "none" else None,
flavor=flavor,
engine=engine,
fixed_generation=fixed_generation,
),
)
final_response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-style-transfer/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
poll_interval=10.0,
max_poll_attempts=480,
)
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
class MagnificImageRelightNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MagnificImageRelightNode",
display_name="Magnific Image Relight",
category="api node/image/Magnific",
description="Relight an image with lighting adjustments and optional reference-based light transfer.",
inputs=[
IO.Image.Input("image", tooltip="The image to relight."),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Descriptive guidance for lighting. Supports emphasis notation (1-1.4).",
),
IO.Int.Input(
"light_transfer_strength",
min=0,
max=100,
default=100,
tooltip="Intensity of light transfer application.",
display_mode=IO.NumberDisplay.slider,
),
IO.Combo.Input(
"style",
options=[
"standard",
"darker_but_realistic",
"clean",
"smooth",
"brighter",
"contrasted_n_hdr",
"just_composition",
],
tooltip="Stylistic output preference.",
),
IO.Boolean.Input(
"interpolate_from_original",
default=False,
tooltip="Restricts generation freedom to match original more closely.",
),
IO.Boolean.Input(
"change_background",
default=True,
tooltip="Modifies background based on prompt/reference.",
),
IO.Boolean.Input(
"preserve_details",
default=True,
tooltip="Maintains texture and fine details from original.",
),
IO.DynamicCombo.Input(
"advanced_settings",
options=[
IO.DynamicCombo.Option("disabled", []),
IO.DynamicCombo.Option(
"enabled",
[
IO.Int.Input(
"whites",
min=0,
max=100,
default=50,
tooltip="Adjusts the brightest tones in the image.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"blacks",
min=0,
max=100,
default=50,
tooltip="Adjusts the darkest tones in the image.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"brightness",
min=0,
max=100,
default=50,
tooltip="Overall brightness adjustment.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"contrast",
min=0,
max=100,
default=50,
tooltip="Contrast adjustment.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"saturation",
min=0,
max=100,
default=50,
tooltip="Color saturation adjustment.",
display_mode=IO.NumberDisplay.slider,
),
IO.Combo.Input(
"engine",
options=[
"automatic",
"balanced",
"cool",
"real",
"illusio",
"fairy",
"colorful_anime",
"hard_transform",
"softy",
],
tooltip="Processing engine selection.",
),
IO.Combo.Input(
"transfer_light_a",
options=["automatic", "low", "medium", "normal", "high", "high_on_faces"],
tooltip="The intensity of light transfer.",
),
IO.Combo.Input(
"transfer_light_b",
options=[
"automatic",
"composition",
"straight",
"smooth_in",
"smooth_out",
"smooth_both",
"reverse_both",
"soft_in",
"soft_out",
"soft_mid",
# "strong_mid", # Commented out because requests fail when this is set.
"style_shift",
"strong_shift",
],
tooltip="Also modifies light transfer intensity. "
"Can be combined with the previous control for varied effects.",
),
IO.Boolean.Input(
"fixed_generation",
default=True,
tooltip="Ensures consistent output with the same settings.",
),
],
),
],
tooltip="Fine-tuning options for advanced lighting control.",
),
IO.Image.Input(
"reference_image",
optional=True,
tooltip="Optional reference image to transfer lighting from.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd":0.11}""",
),
)
@classmethod
async def execute(
cls,
image: Input.Image,
prompt: str,
light_transfer_strength: int,
style: str,
interpolate_from_original: bool,
change_background: bool,
preserve_details: bool,
advanced_settings: InputAdvancedSettings,
reference_image: Input.Image | None = None,
) -> IO.NodeOutput:
if get_number_of_images(image) != 1:
raise ValueError("Exactly one input image is required.")
if reference_image is not None and get_number_of_images(reference_image) != 1:
raise ValueError("Exactly one reference image is required.")
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
validate_image_dimensions(image, min_height=160, min_width=160)
if reference_image is not None:
validate_image_aspect_ratio(reference_image, (1, 3), (3, 1), strict=False)
validate_image_dimensions(reference_image, min_height=160, min_width=160)
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0]
reference_url = None
if reference_image is not None:
reference_url = (await upload_images_to_comfyapi(cls, reference_image, max_images=1))[0]
adv_settings = None
if advanced_settings["advanced_settings"] == "enabled":
adv_settings = ImageRelightAdvancedSettingsRequest(
whites=advanced_settings["whites"],
blacks=advanced_settings["blacks"],
brightness=advanced_settings["brightness"],
contrast=advanced_settings["contrast"],
saturation=advanced_settings["saturation"],
engine=advanced_settings["engine"],
transfer_light_a=advanced_settings["transfer_light_a"],
transfer_light_b=advanced_settings["transfer_light_b"],
fixed_generation=advanced_settings["fixed_generation"],
)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-relight", method="POST"),
response_model=TaskResponse,
data=ImageRelightRequest(
image=image_url,
prompt=prompt if prompt else None,
transfer_light_from_reference_image=reference_url,
light_transfer_strength=light_transfer_strength,
interpolate_from_original=interpolate_from_original,
change_background=change_background,
style=style,
preserve_details=preserve_details,
advanced_settings=adv_settings,
),
)
final_response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-relight/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
poll_interval=10.0,
max_poll_attempts=480,
)
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
class MagnificImageSkinEnhancerNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="MagnificImageSkinEnhancerNode",
display_name="Magnific Image Skin Enhancer",
category="api node/image/Magnific",
description="Skin enhancement for portraits with multiple processing modes.",
inputs=[
IO.Image.Input("image", tooltip="The portrait image to enhance."),
IO.Int.Input(
"sharpen",
min=0,
max=100,
default=0,
tooltip="Sharpening intensity level.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"smart_grain",
min=0,
max=100,
default=2,
tooltip="Smart grain intensity level.",
display_mode=IO.NumberDisplay.slider,
),
IO.DynamicCombo.Input(
"mode",
options=[
IO.DynamicCombo.Option("creative", []),
IO.DynamicCombo.Option(
"faithful",
[
IO.Int.Input(
"skin_detail",
min=0,
max=100,
default=80,
tooltip="Skin detail enhancement level.",
display_mode=IO.NumberDisplay.slider,
),
],
),
IO.DynamicCombo.Option(
"flexible",
[
IO.Combo.Input(
"optimized_for",
options=[
"enhance_skin",
"improve_lighting",
"enhance_everything",
"transform_to_real",
"no_make_up",
],
tooltip="Enhancement optimization target.",
),
],
),
],
tooltip="Processing mode: creative for artistic enhancement, "
"faithful for preserving original appearance, "
"flexible for targeted optimization.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["mode"]),
expr="""
(
$rates := {"creative": 0.29, "faithful": 0.37, "flexible": 0.45};
{"type":"usd","usd": $lookup($rates, widgets.mode)}
)
""",
),
)
@classmethod
async def execute(
cls,
image: Input.Image,
sharpen: int,
smart_grain: int,
mode: InputSkinEnhancerMode,
) -> IO.NodeOutput:
if get_number_of_images(image) != 1:
raise ValueError("Exactly one input image is required.")
validate_image_aspect_ratio(image, (1, 3), (3, 1), strict=False)
validate_image_dimensions(image, min_height=160, min_width=160)
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1, total_pixels=4096 * 4096))[0]
selected_mode = mode["mode"]
if selected_mode == "creative":
endpoint = "creative"
data = ImageSkinEnhancerCreativeRequest(
image=image_url,
sharpen=sharpen,
smart_grain=smart_grain,
)
elif selected_mode == "faithful":
endpoint = "faithful"
data = ImageSkinEnhancerFaithfulRequest(
image=image_url,
sharpen=sharpen,
smart_grain=smart_grain,
skin_detail=mode["skin_detail"],
)
else: # flexible
endpoint = "flexible"
data = ImageSkinEnhancerFlexibleRequest(
image=image_url,
sharpen=sharpen,
smart_grain=smart_grain,
optimized_for=mode["optimized_for"],
)
initial_res = await sync_op(
cls,
ApiEndpoint(path=f"/proxy/freepik/v1/ai/skin-enhancer/{endpoint}", method="POST"),
response_model=TaskResponse,
data=data,
)
final_response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/freepik/v1/ai/skin-enhancer/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
poll_interval=10.0,
max_poll_attempts=480,
)
return IO.NodeOutput(await download_url_to_image_tensor(final_response.generated[0]))
class MagnificExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
MagnificImageUpscalerCreativeNode,
MagnificImageUpscalerPreciseV2Node,
MagnificImageStyleTransferNode,
MagnificImageRelightNode,
MagnificImageSkinEnhancerNode,
]
async def comfy_entrypoint() -> MagnificExtension:
return MagnificExtension()