mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-26 19:19:53 +00:00
Frozensets can only contain hashable types, so use nested frozensets instead of dicts. Added separate test for dict handling via serialize_cache_key. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
371 lines
11 KiB
Python
371 lines
11 KiB
Python
"""Tests for external cache provider API."""
|
|
|
|
import importlib.util
|
|
import pytest
|
|
from typing import Optional
|
|
|
|
|
|
def _torch_available() -> bool:
|
|
"""Check if PyTorch is available."""
|
|
return importlib.util.find_spec("torch") is not None
|
|
|
|
|
|
from comfy_execution.cache_provider import (
|
|
CacheProvider,
|
|
CacheContext,
|
|
CacheValue,
|
|
register_cache_provider,
|
|
unregister_cache_provider,
|
|
get_cache_providers,
|
|
has_cache_providers,
|
|
clear_cache_providers,
|
|
serialize_cache_key,
|
|
contains_nan,
|
|
estimate_value_size,
|
|
_canonicalize,
|
|
)
|
|
|
|
|
|
class TestCanonicalize:
|
|
"""Test _canonicalize function for deterministic ordering."""
|
|
|
|
def test_frozenset_ordering_is_deterministic(self):
|
|
"""Frozensets should produce consistent canonical form regardless of iteration order."""
|
|
# Create two frozensets with same content
|
|
fs1 = frozenset([("a", 1), ("b", 2), ("c", 3)])
|
|
fs2 = frozenset([("c", 3), ("a", 1), ("b", 2)])
|
|
|
|
result1 = _canonicalize(fs1)
|
|
result2 = _canonicalize(fs2)
|
|
|
|
assert result1 == result2
|
|
|
|
def test_nested_frozenset_ordering(self):
|
|
"""Nested frozensets should also be deterministically ordered."""
|
|
inner1 = frozenset([1, 2, 3])
|
|
inner2 = frozenset([3, 2, 1])
|
|
|
|
fs1 = frozenset([("key", inner1)])
|
|
fs2 = frozenset([("key", inner2)])
|
|
|
|
result1 = _canonicalize(fs1)
|
|
result2 = _canonicalize(fs2)
|
|
|
|
assert result1 == result2
|
|
|
|
def test_dict_ordering(self):
|
|
"""Dicts should be sorted by key."""
|
|
d1 = {"z": 1, "a": 2, "m": 3}
|
|
d2 = {"a": 2, "m": 3, "z": 1}
|
|
|
|
result1 = _canonicalize(d1)
|
|
result2 = _canonicalize(d2)
|
|
|
|
assert result1 == result2
|
|
|
|
def test_tuple_preserved(self):
|
|
"""Tuples should be marked and preserved."""
|
|
t = (1, 2, 3)
|
|
result = _canonicalize(t)
|
|
|
|
assert result[0] == "__tuple__"
|
|
assert result[1] == [1, 2, 3]
|
|
|
|
def test_list_preserved(self):
|
|
"""Lists should be recursively canonicalized."""
|
|
lst = [{"b": 2, "a": 1}, frozenset([3, 2, 1])]
|
|
result = _canonicalize(lst)
|
|
|
|
# First element should be dict with sorted keys
|
|
assert result[0] == {"a": 1, "b": 2}
|
|
# Second element should be canonicalized frozenset
|
|
assert result[1][0] == "__frozenset__"
|
|
|
|
def test_primitives_unchanged(self):
|
|
"""Primitive types should pass through unchanged."""
|
|
assert _canonicalize(42) == 42
|
|
assert _canonicalize(3.14) == 3.14
|
|
assert _canonicalize("hello") == "hello"
|
|
assert _canonicalize(True) is True
|
|
assert _canonicalize(None) is None
|
|
|
|
def test_bytes_converted(self):
|
|
"""Bytes should be converted to hex string."""
|
|
b = b"\x00\xff"
|
|
result = _canonicalize(b)
|
|
|
|
assert result[0] == "__bytes__"
|
|
assert result[1] == "00ff"
|
|
|
|
def test_set_ordering(self):
|
|
"""Sets should be sorted like frozensets."""
|
|
s1 = {3, 1, 2}
|
|
s2 = {1, 2, 3}
|
|
|
|
result1 = _canonicalize(s1)
|
|
result2 = _canonicalize(s2)
|
|
|
|
assert result1 == result2
|
|
assert result1[0] == "__set__"
|
|
|
|
|
|
class TestSerializeCacheKey:
|
|
"""Test serialize_cache_key for deterministic hashing."""
|
|
|
|
def test_same_content_same_hash(self):
|
|
"""Same content should produce same hash."""
|
|
key1 = frozenset([("node_1", frozenset([("input", "value")]))])
|
|
key2 = frozenset([("node_1", frozenset([("input", "value")]))])
|
|
|
|
hash1 = serialize_cache_key(key1)
|
|
hash2 = serialize_cache_key(key2)
|
|
|
|
assert hash1 == hash2
|
|
|
|
def test_different_content_different_hash(self):
|
|
"""Different content should produce different hash."""
|
|
key1 = frozenset([("node_1", "value_a")])
|
|
key2 = frozenset([("node_1", "value_b")])
|
|
|
|
hash1 = serialize_cache_key(key1)
|
|
hash2 = serialize_cache_key(key2)
|
|
|
|
assert hash1 != hash2
|
|
|
|
def test_returns_bytes(self):
|
|
"""Should return bytes (SHA256 digest)."""
|
|
key = frozenset([("test", 123)])
|
|
result = serialize_cache_key(key)
|
|
|
|
assert isinstance(result, bytes)
|
|
assert len(result) == 32 # SHA256 produces 32 bytes
|
|
|
|
def test_complex_nested_structure(self):
|
|
"""Complex nested structures should hash deterministically."""
|
|
# Note: frozensets can only contain hashable types, so we use
|
|
# nested frozensets of tuples to represent dict-like structures
|
|
key = frozenset([
|
|
("node_1", frozenset([
|
|
("input_a", ("tuple", "value")),
|
|
("input_b", frozenset([("nested", "dict")])),
|
|
])),
|
|
("node_2", frozenset([
|
|
("param", 42),
|
|
])),
|
|
])
|
|
|
|
# Hash twice to verify determinism
|
|
hash1 = serialize_cache_key(key)
|
|
hash2 = serialize_cache_key(key)
|
|
|
|
assert hash1 == hash2
|
|
|
|
def test_dict_in_cache_key(self):
|
|
"""Dicts passed directly to serialize_cache_key should work."""
|
|
# This tests the _canonicalize function's ability to handle dicts
|
|
key = {"node_1": {"input": "value"}, "node_2": 42}
|
|
|
|
hash1 = serialize_cache_key(key)
|
|
hash2 = serialize_cache_key(key)
|
|
|
|
assert hash1 == hash2
|
|
assert isinstance(hash1, bytes)
|
|
assert len(hash1) == 32
|
|
|
|
|
|
class TestContainsNan:
|
|
"""Test contains_nan utility function."""
|
|
|
|
def test_nan_float_detected(self):
|
|
"""NaN floats should be detected."""
|
|
assert contains_nan(float('nan')) is True
|
|
|
|
def test_regular_float_not_nan(self):
|
|
"""Regular floats should not be detected as NaN."""
|
|
assert contains_nan(3.14) is False
|
|
assert contains_nan(0.0) is False
|
|
assert contains_nan(-1.5) is False
|
|
|
|
def test_infinity_not_nan(self):
|
|
"""Infinity is not NaN."""
|
|
assert contains_nan(float('inf')) is False
|
|
assert contains_nan(float('-inf')) is False
|
|
|
|
def test_nan_in_list(self):
|
|
"""NaN in list should be detected."""
|
|
assert contains_nan([1, 2, float('nan'), 4]) is True
|
|
assert contains_nan([1, 2, 3, 4]) is False
|
|
|
|
def test_nan_in_tuple(self):
|
|
"""NaN in tuple should be detected."""
|
|
assert contains_nan((1, float('nan'))) is True
|
|
assert contains_nan((1, 2, 3)) is False
|
|
|
|
def test_nan_in_frozenset(self):
|
|
"""NaN in frozenset should be detected."""
|
|
assert contains_nan(frozenset([1, float('nan')])) is True
|
|
assert contains_nan(frozenset([1, 2, 3])) is False
|
|
|
|
def test_nan_in_dict_value(self):
|
|
"""NaN in dict value should be detected."""
|
|
assert contains_nan({"key": float('nan')}) is True
|
|
assert contains_nan({"key": 42}) is False
|
|
|
|
def test_nan_in_nested_structure(self):
|
|
"""NaN in deeply nested structure should be detected."""
|
|
nested = {"level1": [{"level2": (1, 2, float('nan'))}]}
|
|
assert contains_nan(nested) is True
|
|
|
|
def test_non_numeric_types(self):
|
|
"""Non-numeric types should not be NaN."""
|
|
assert contains_nan("string") is False
|
|
assert contains_nan(None) is False
|
|
assert contains_nan(True) is False
|
|
|
|
|
|
class TestEstimateValueSize:
|
|
"""Test estimate_value_size utility function."""
|
|
|
|
def test_empty_outputs(self):
|
|
"""Empty outputs should have zero size."""
|
|
value = CacheValue(outputs=[])
|
|
assert estimate_value_size(value) == 0
|
|
|
|
@pytest.mark.skipif(
|
|
not _torch_available(),
|
|
reason="PyTorch not available"
|
|
)
|
|
def test_tensor_size_estimation(self):
|
|
"""Tensor size should be estimated correctly."""
|
|
import torch
|
|
|
|
# 1000 float32 elements = 4000 bytes
|
|
tensor = torch.zeros(1000, dtype=torch.float32)
|
|
value = CacheValue(outputs=[[tensor]])
|
|
|
|
size = estimate_value_size(value)
|
|
assert size == 4000
|
|
|
|
@pytest.mark.skipif(
|
|
not _torch_available(),
|
|
reason="PyTorch not available"
|
|
)
|
|
def test_nested_tensor_in_dict(self):
|
|
"""Tensors nested in dicts should be counted."""
|
|
import torch
|
|
|
|
tensor = torch.zeros(100, dtype=torch.float32) # 400 bytes
|
|
value = CacheValue(outputs=[[{"samples": tensor}]])
|
|
|
|
size = estimate_value_size(value)
|
|
assert size == 400
|
|
|
|
|
|
class TestProviderRegistry:
|
|
"""Test cache provider registration and retrieval."""
|
|
|
|
def setup_method(self):
|
|
"""Clear providers before each test."""
|
|
clear_cache_providers()
|
|
|
|
def teardown_method(self):
|
|
"""Clear providers after each test."""
|
|
clear_cache_providers()
|
|
|
|
def test_register_provider(self):
|
|
"""Provider should be registered successfully."""
|
|
provider = MockCacheProvider()
|
|
register_cache_provider(provider)
|
|
|
|
assert has_cache_providers() is True
|
|
providers = get_cache_providers()
|
|
assert len(providers) == 1
|
|
assert providers[0] is provider
|
|
|
|
def test_unregister_provider(self):
|
|
"""Provider should be unregistered successfully."""
|
|
provider = MockCacheProvider()
|
|
register_cache_provider(provider)
|
|
unregister_cache_provider(provider)
|
|
|
|
assert has_cache_providers() is False
|
|
|
|
def test_multiple_providers(self):
|
|
"""Multiple providers can be registered."""
|
|
provider1 = MockCacheProvider()
|
|
provider2 = MockCacheProvider()
|
|
|
|
register_cache_provider(provider1)
|
|
register_cache_provider(provider2)
|
|
|
|
providers = get_cache_providers()
|
|
assert len(providers) == 2
|
|
|
|
def test_duplicate_registration_ignored(self):
|
|
"""Registering same provider twice should be ignored."""
|
|
provider = MockCacheProvider()
|
|
|
|
register_cache_provider(provider)
|
|
register_cache_provider(provider) # Should be ignored
|
|
|
|
providers = get_cache_providers()
|
|
assert len(providers) == 1
|
|
|
|
def test_clear_providers(self):
|
|
"""clear_cache_providers should remove all providers."""
|
|
provider1 = MockCacheProvider()
|
|
provider2 = MockCacheProvider()
|
|
|
|
register_cache_provider(provider1)
|
|
register_cache_provider(provider2)
|
|
clear_cache_providers()
|
|
|
|
assert has_cache_providers() is False
|
|
assert len(get_cache_providers()) == 0
|
|
|
|
|
|
class TestCacheContext:
|
|
"""Test CacheContext dataclass."""
|
|
|
|
def test_context_creation(self):
|
|
"""CacheContext should be created with all fields."""
|
|
context = CacheContext(
|
|
prompt_id="prompt-123",
|
|
node_id="node-456",
|
|
class_type="KSampler",
|
|
cache_key=frozenset([("test", "value")]),
|
|
cache_key_bytes=b"hash_bytes",
|
|
)
|
|
|
|
assert context.prompt_id == "prompt-123"
|
|
assert context.node_id == "node-456"
|
|
assert context.class_type == "KSampler"
|
|
assert context.cache_key == frozenset([("test", "value")])
|
|
assert context.cache_key_bytes == b"hash_bytes"
|
|
|
|
|
|
class TestCacheValue:
|
|
"""Test CacheValue dataclass."""
|
|
|
|
def test_value_creation(self):
|
|
"""CacheValue should be created with outputs."""
|
|
outputs = [[{"samples": "tensor_data"}]]
|
|
value = CacheValue(outputs=outputs)
|
|
|
|
assert value.outputs == outputs
|
|
|
|
|
|
class MockCacheProvider(CacheProvider):
|
|
"""Mock cache provider for testing."""
|
|
|
|
def __init__(self):
|
|
self.lookups = []
|
|
self.stores = []
|
|
|
|
def on_lookup(self, context: CacheContext) -> Optional[CacheValue]:
|
|
self.lookups.append(context)
|
|
return None
|
|
|
|
def on_store(self, context: CacheContext, value: CacheValue) -> None:
|
|
self.stores.append((context, value))
|