Files
ComfyUI/comfy_extras/nodes_nag.py
comfyanonymous 18927538a1 Implement NAG on all the models based on the Flux code. (#12500)
Use the Normalized Attention Guidance node.

Flux, Flux2, Klein, Chroma, Chroma radiance, Hunyuan Video, etc..
2026-02-16 23:30:34 -05:00

100 lines
4.1 KiB
Python

import torch
from comfy_api.latest import ComfyExtension, io
from typing_extensions import override
class NAGuidance(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="NAGuidance",
display_name="Normalized Attention Guidance",
description="Applies Normalized Attention Guidance to models, enabling negative prompts on distilled/schnell models.",
category="",
is_experimental=True,
inputs=[
io.Model.Input("model", tooltip="The model to apply NAG to."),
io.Float.Input("nag_scale", min=0.0, default=5.0, max=50.0, step=0.1, tooltip="The guidance scale factor. Higher values push further from the negative prompt."),
io.Float.Input("nag_alpha", min=0.0, default=0.5, max=1.0, step=0.01, tooltip="Blending factor for the normalized attention. 1.0 is full replacement, 0.0 is no effect."),
io.Float.Input("nag_tau", min=1.0, default=1.5, max=10.0, step=0.01),
# io.Float.Input("start_percent", min=0.0, default=0.0, max=1.0, step=0.01, tooltip="The relative sampling step to begin applying NAG."),
# io.Float.Input("end_percent", min=0.0, default=1.0, max=1.0, step=0.01, tooltip="The relative sampling step to stop applying NAG."),
],
outputs=[
io.Model.Output(tooltip="The patched model with NAG enabled."),
],
)
@classmethod
def execute(cls, model: io.Model.Type, nag_scale: float, nag_alpha: float, nag_tau: float) -> io.NodeOutput:
m = model.clone()
# sigma_start = m.get_model_object("model_sampling").percent_to_sigma(start_percent)
# sigma_end = m.get_model_object("model_sampling").percent_to_sigma(end_percent)
def nag_attention_output_patch(out, extra_options):
cond_or_uncond = extra_options.get("cond_or_uncond", None)
if cond_or_uncond is None:
return out
if not (1 in cond_or_uncond and 0 in cond_or_uncond):
return out
# sigma = extra_options.get("sigmas", None)
# if sigma is not None and len(sigma) > 0:
# sigma = sigma[0].item()
# if sigma > sigma_start or sigma < sigma_end:
# return out
img_slice = extra_options.get("img_slice", None)
if img_slice is not None:
orig_out = out
out = out[:, img_slice[0]:img_slice[1]] # only apply on img part
batch_size = out.shape[0]
half_size = batch_size // len(cond_or_uncond)
ind_neg = cond_or_uncond.index(1)
ind_pos = cond_or_uncond.index(0)
z_pos = out[half_size * ind_pos:half_size * (ind_pos + 1)]
z_neg = out[half_size * ind_neg:half_size * (ind_neg + 1)]
guided = z_pos * nag_scale - z_neg * (nag_scale - 1.0)
eps = 1e-6
norm_pos = torch.norm(z_pos, p=1, dim=-1, keepdim=True).clamp_min(eps)
norm_guided = torch.norm(guided, p=1, dim=-1, keepdim=True).clamp_min(eps)
ratio = norm_guided / norm_pos
scale_factor = torch.minimum(ratio, torch.full_like(ratio, nag_tau)) / ratio
guided_normalized = guided * scale_factor
z_final = guided_normalized * nag_alpha + z_pos * (1.0 - nag_alpha)
if img_slice is not None:
orig_out[half_size * ind_neg:half_size * (ind_neg + 1), img_slice[0]:img_slice[1]] = z_final
orig_out[half_size * ind_pos:half_size * (ind_pos + 1), img_slice[0]:img_slice[1]] = z_final
return orig_out
else:
out[half_size * ind_pos:half_size * (ind_pos + 1)] = z_final
return out
m.set_model_attn1_output_patch(nag_attention_output_patch)
m.disable_model_cfg1_optimization()
return io.NodeOutput(m)
class NagExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
NAGuidance,
]
async def comfy_entrypoint() -> NagExtension:
return NagExtension()