import argparse import cv2 import numpy as np import os import torch import torch.nn.functional as F from torchvision.transforms import Compose from tqdm import tqdm from depth_anything.dpt import DPT_DINOv2 from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--img-path', type=str) parser.add_argument('--outdir', type=str, default='./vis_depth') parser.add_argument('--encoder', type=str, default='vitl') parser.add_argument('--load-from', type=str, required=True) parser.add_argument('--localhub', dest='localhub', action='store_true', default=False) args = parser.parse_args() margin_width = 50 caption_height = 60 font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 1 font_thickness = 2 assert args.encoder in ['vits', 'vitb', 'vitl'] if args.encoder == 'vits': depth_anything = DPT_DINOv2(encoder='vits', features=64, out_channels=[48, 96, 192, 384], localhub=args.localhub).cuda() elif args.encoder == 'vitb': depth_anything = DPT_DINOv2(encoder='vitb', features=128, out_channels=[96, 192, 384, 768], localhub=args.localhub).cuda() else: depth_anything = DPT_DINOv2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024], localhub=args.localhub).cuda() total_params = sum(param.numel() for param in depth_anything.parameters()) print('Total parameters: {:.2f}M'.format(total_params / 1e6)) depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu'), strict=True) depth_anything.eval() transform = Compose([ Resize( width=518, height=518, resize_target=False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ]) if os.path.isfile(args.img_path): if args.img_path.endswith('txt'): with open(args.img_path, 'r') as f: filenames = f.read().splitlines() else: filenames = [args.img_path] else: filenames = os.listdir(args.img_path) filenames = [os.path.join(args.img_path, filename) for filename in filenames] filenames.sort() for filename in tqdm(filenames): raw_image = cv2.imread(filename) image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0 h, w = image.shape[:2] image = transform({'image': image})['image'] image = torch.from_numpy(image).unsqueeze(0).cuda() with torch.no_grad(): depth = depth_anything(image) depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth = depth.cpu().numpy().astype(np.uint8) depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO) os.makedirs(args.outdir, exist_ok=True) filename = os.path.basename(filename) split_region = np.ones((raw_image.shape[0], margin_width, 3), dtype=np.uint8) * 255 combined_results = cv2.hconcat([raw_image, split_region, depth_color]) caption_space = np.ones((caption_height, combined_results.shape[1], 3), dtype=np.uint8) * 255 captions = ['Raw image', 'Depth Anything'] segment_width = w + margin_width for i, caption in enumerate(captions): # Calculate text size text_size = cv2.getTextSize(caption, font, font_scale, font_thickness)[0] # Calculate x-coordinate to center the text text_x = int((segment_width * i) + (w - text_size[0]) / 2) # Add text caption cv2.putText(caption_space, caption, (text_x, 40), font, font_scale, (0, 0, 0), font_thickness) final_result = cv2.vconcat([caption_space, combined_results]) cv2.imwrite(os.path.join(args.outdir, filename[:filename.find('.')] + '_img_depth.png'), final_result)