mirror of
https://github.com/huchenlei/Depth-Anything.git
synced 2026-01-26 15:29:46 +00:00
97 lines
3.4 KiB
Python
97 lines
3.4 KiB
Python
import gradio as gr
|
|
import cv2
|
|
import numpy as np
|
|
import os
|
|
from PIL import Image
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torchvision.transforms import Compose
|
|
import tempfile
|
|
from gradio_imageslider import ImageSlider
|
|
|
|
from depth_anything.dpt import DPT_DINOv2
|
|
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
|
|
|
|
css = """
|
|
#img-display-container {
|
|
max-height: 100vh;
|
|
}
|
|
#img-display-input {
|
|
max-height: 80vh;
|
|
}
|
|
#img-display-output {
|
|
max-height: 80vh;
|
|
}
|
|
"""
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
model = DPT_DINOv2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).to(DEVICE).eval()
|
|
model.load_state_dict(torch.load('checkpoints/depth_anything_vitl14.pth'))
|
|
|
|
title = "# Depth Anything"
|
|
description = """Official demo for **Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data**.
|
|
Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""
|
|
|
|
transform = Compose([
|
|
Resize(
|
|
width=518,
|
|
height=518,
|
|
resize_target=False,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=14,
|
|
resize_method='lower_bound',
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
PrepareForNet(),
|
|
])
|
|
|
|
@torch.no_grad()
|
|
def predict_depth(model, image):
|
|
return model(image)
|
|
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
gr.Markdown(title)
|
|
gr.Markdown(description)
|
|
gr.Markdown("### Depth Prediction demo")
|
|
gr.Markdown("You can slide the output to compare the depth prediction with input image")
|
|
|
|
with gr.Row():
|
|
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
|
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0)
|
|
raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)")
|
|
submit = gr.Button("Submit")
|
|
|
|
def on_submit(image):
|
|
original_image = image.copy()
|
|
|
|
h, w = image.shape[:2]
|
|
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
|
|
image = transform({'image': image})['image']
|
|
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE)
|
|
|
|
depth = predict_depth(model, image)
|
|
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
|
|
|
|
raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16'))
|
|
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
|
raw_depth.save(tmp.name)
|
|
|
|
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
|
depth = depth.cpu().numpy().astype(np.uint8)
|
|
colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
|
|
|
|
return [(original_image, colored_depth), tmp.name]
|
|
|
|
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, raw_file])
|
|
|
|
example_files = os.listdir('assets/examples')
|
|
example_files.sort()
|
|
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
|
|
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, raw_file], fn=on_submit, cache_examples=False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
demo.queue().launch()
|