import numpy as np from PIL import Image from .util import resize_image_with_pad, common_input_validate, HWC3, custom_hf_download from hand_refiner.pipeline import MeshGraphormerMediapipe, args class MeshGraphormerDetector: def __init__(self, pipeline): self.pipeline = pipeline @classmethod def from_pretrained(cls, pretrained_model_or_path, filename=None, hrnet_filename=None, cache_dir=None, device="cuda"): filename = filename or "graphormer_hand_state_dict.bin" hrnet_filename = hrnet_filename or "hrnetv2_w64_imagenet_pretrained.pth" args.resume_checkpoint = custom_hf_download(pretrained_model_or_path, filename, cache_dir) args.hrnet_checkpoint = custom_hf_download(pretrained_model_or_path, hrnet_filename, cache_dir) args.device = device pipeline = MeshGraphormerMediapipe(args) return cls(pipeline) def to(self, device): self.pipeline._model.to(device) self.pipeline.mano_model.to(device) self.pipeline.mano_model.layer.to(device) return self def __call__(self, input_image=None, mask_bbox_padding=30, detect_resolution=512, output_type=None, upscale_method="INTER_CUBIC", **kwargs): input_image, output_type = common_input_validate(input_image, output_type, **kwargs) depth_map, mask, info = self.pipeline.get_depth(input_image, mask_bbox_padding) if depth_map is None: depth_map = np.zeros_like(input_image) mask = np.zeros_like(input_image) #The hand is small depth_map, mask = HWC3(depth_map), HWC3(mask) depth_map, remove_pad = resize_image_with_pad(depth_map, detect_resolution, upscale_method) depth_map = remove_pad(depth_map) if output_type == "pil": depth_map = Image.fromarray(depth_map) mask = Image.fromarray(mask) return depth_map, mask, info