mirror of
https://github.com/huchenlei/HandRefinerPortable.git
synced 2026-01-26 15:49:45 +00:00
193 lines
7.0 KiB
Python
193 lines
7.0 KiB
Python
import os
|
|
import random
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from pathlib import Path
|
|
import warnings
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
here = Path(__file__).parent.resolve()
|
|
|
|
def HWC3(x):
|
|
assert x.dtype == np.uint8
|
|
if x.ndim == 2:
|
|
x = x[:, :, None]
|
|
assert x.ndim == 3
|
|
H, W, C = x.shape
|
|
assert C == 1 or C == 3 or C == 4
|
|
if C == 3:
|
|
return x
|
|
if C == 1:
|
|
return np.concatenate([x, x, x], axis=2)
|
|
if C == 4:
|
|
color = x[:, :, 0:3].astype(np.float32)
|
|
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
|
y = color * alpha + 255.0 * (1.0 - alpha)
|
|
y = y.clip(0, 255).astype(np.uint8)
|
|
return y
|
|
|
|
|
|
def make_noise_disk(H, W, C, F):
|
|
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
|
|
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
|
|
noise = noise[F: F + H, F: F + W]
|
|
noise -= np.min(noise)
|
|
noise /= np.max(noise)
|
|
if C == 1:
|
|
noise = noise[:, :, None]
|
|
return noise
|
|
|
|
|
|
def nms(x, t, s):
|
|
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
|
|
|
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
|
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
|
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
|
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
|
|
|
y = np.zeros_like(x)
|
|
|
|
for f in [f1, f2, f3, f4]:
|
|
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
|
|
|
z = np.zeros_like(y, dtype=np.uint8)
|
|
z[y > t] = 255
|
|
return z
|
|
|
|
def min_max_norm(x):
|
|
x -= np.min(x)
|
|
x /= np.maximum(np.max(x), 1e-5)
|
|
return x
|
|
|
|
|
|
def safe_step(x, step=2):
|
|
y = x.astype(np.float32) * float(step + 1)
|
|
y = y.astype(np.int32).astype(np.float32) / float(step)
|
|
return y
|
|
|
|
|
|
def img2mask(img, H, W, low=10, high=90):
|
|
assert img.ndim == 3 or img.ndim == 2
|
|
assert img.dtype == np.uint8
|
|
|
|
if img.ndim == 3:
|
|
y = img[:, :, random.randrange(0, img.shape[2])]
|
|
else:
|
|
y = img
|
|
|
|
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)
|
|
|
|
if random.uniform(0, 1) < 0.5:
|
|
y = 255 - y
|
|
|
|
return y < np.percentile(y, random.randrange(low, high))
|
|
|
|
def safer_memory(x):
|
|
# Fix many MAC/AMD problems
|
|
return np.ascontiguousarray(x.copy()).copy()
|
|
|
|
UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"]
|
|
def get_upscale_method(method_str):
|
|
assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}"
|
|
return getattr(cv2, method_str)
|
|
|
|
def pad64(x):
|
|
return int(np.ceil(float(x) / 64.0) * 64 - x)
|
|
|
|
#https://github.com/Mikubill/sd-webui-controlnet/blob/main/scripts/processor.py#L17
|
|
#Added upscale_method param
|
|
def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False):
|
|
if skip_hwc3:
|
|
img = input_image
|
|
else:
|
|
img = HWC3(input_image)
|
|
H_raw, W_raw, _ = img.shape
|
|
k = float(resolution) / float(min(H_raw, W_raw))
|
|
H_target = int(np.round(float(H_raw) * k))
|
|
W_target = int(np.round(float(W_raw) * k))
|
|
img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA)
|
|
H_pad, W_pad = pad64(H_target), pad64(W_target)
|
|
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
|
|
|
|
def remove_pad(x):
|
|
return safer_memory(x[:H_target, :W_target, ...])
|
|
|
|
return safer_memory(img_padded), remove_pad
|
|
|
|
def common_input_validate(input_image, output_type, **kwargs):
|
|
if "img" in kwargs:
|
|
warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning)
|
|
input_image = kwargs.pop("img")
|
|
|
|
if "return_pil" in kwargs:
|
|
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
|
|
output_type = "pil" if kwargs["return_pil"] else "np"
|
|
|
|
if type(output_type) is bool:
|
|
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
|
|
if output_type:
|
|
output_type = "pil"
|
|
|
|
if input_image is None:
|
|
raise ValueError("input_image must be defined.")
|
|
|
|
if not isinstance(input_image, np.ndarray):
|
|
input_image = np.array(input_image, dtype=np.uint8)
|
|
output_type = output_type or "pil"
|
|
else:
|
|
output_type = output_type or "np"
|
|
|
|
return (input_image, output_type)
|
|
|
|
def custom_hf_download(pretrained_model_or_path, filename, cache_dir, subfolder='', use_symlinks=False):
|
|
local_dir = os.path.join(cache_dir, pretrained_model_or_path)
|
|
model_path = os.path.join(local_dir, *subfolder.split('/'), filename)
|
|
|
|
if not os.path.exists(model_path):
|
|
print(f"Failed to find {model_path}.\n Downloading from huggingface.co")
|
|
if use_symlinks:
|
|
cache_dir_d = os.getenv("HUGGINGFACE_HUB_CACHE")
|
|
if cache_dir_d is None:
|
|
import platform
|
|
if platform.system() == "Windows":
|
|
cache_dir_d = os.path.join(os.getenv("USERPROFILE"), ".cache", "huggingface", "hub")
|
|
else:
|
|
cache_dir_d = os.path.join(os.getenv("HOME"), ".cache", "huggingface", "hub")
|
|
try:
|
|
# test_link
|
|
if not os.path.exists(cache_dir_d):
|
|
os.makedirs(cache_dir_d)
|
|
open(os.path.join(cache_dir_d, f"linktest_{filename}.txt"), "w")
|
|
os.link(os.path.join(cache_dir_d, f"linktest_{filename}.txt"), os.path.join(cache_dir, f"linktest_{filename}.txt"))
|
|
os.remove(os.path.join(cache_dir, f"linktest_{filename}.txt"))
|
|
os.remove(os.path.join(cache_dir_d, f"linktest_{filename}.txt"))
|
|
print("Using symlinks to download models. \n",\
|
|
"Make sure you have enough space on your cache folder. \n",\
|
|
"And do not purge the cache folder after downloading.\n",\
|
|
"Otherwise, you will have to re-download the models every time you run the script.\n",\
|
|
"You can use USE_SYMLINKS: False in config.yaml to avoid this behavior.")
|
|
except:
|
|
print("Maybe not able to create symlink. Disable using symlinks.")
|
|
use_symlinks = False
|
|
cache_dir_d = os.path.join(cache_dir, pretrained_model_or_path, "cache")
|
|
else:
|
|
cache_dir_d = os.path.join(cache_dir, pretrained_model_or_path, "cache")
|
|
|
|
model_path = hf_hub_download(repo_id=pretrained_model_or_path,
|
|
cache_dir=cache_dir_d,
|
|
local_dir=local_dir,
|
|
subfolder=subfolder,
|
|
filename=filename,
|
|
local_dir_use_symlinks=use_symlinks,
|
|
resume_download=True,
|
|
etag_timeout=100
|
|
)
|
|
if not use_symlinks:
|
|
try:
|
|
import shutil
|
|
shutil.rmtree(cache_dir_d)
|
|
except Exception as e :
|
|
print(e)
|
|
return model_path |