mirror of
https://github.com/huchenlei/HandRefinerPortable.git
synced 2026-01-26 15:49:45 +00:00
177 lines
5.1 KiB
Python
177 lines
5.1 KiB
Python
"""
|
|
Copyright (c) Microsoft Corporation.
|
|
Licensed under the MIT license.
|
|
|
|
This file contains primitives for multi-gpu communication.
|
|
This is useful when doing distributed training.
|
|
"""
|
|
|
|
import pickle
|
|
import time
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
|
|
device = "cuda"
|
|
|
|
|
|
def get_world_size():
|
|
if not dist.is_available():
|
|
return 1
|
|
if not dist.is_initialized():
|
|
return 1
|
|
return dist.get_world_size()
|
|
|
|
|
|
def get_rank():
|
|
if not dist.is_available():
|
|
return 0
|
|
if not dist.is_initialized():
|
|
return 0
|
|
return dist.get_rank()
|
|
|
|
|
|
def is_main_process():
|
|
return get_rank() == 0
|
|
|
|
|
|
def synchronize():
|
|
"""
|
|
Helper function to synchronize (barrier) among all processes when
|
|
using distributed training
|
|
"""
|
|
if not dist.is_available():
|
|
return
|
|
if not dist.is_initialized():
|
|
return
|
|
world_size = dist.get_world_size()
|
|
if world_size == 1:
|
|
return
|
|
dist.barrier()
|
|
|
|
|
|
def gather_on_master(data):
|
|
"""Same as all_gather, but gathers data on master process only, using CPU.
|
|
Thus, this does not work with NCCL backend unless they add CPU support.
|
|
|
|
The memory consumption of this function is ~ 3x of data size. While in
|
|
principal, it should be ~2x, it's not easy to force Python to release
|
|
memory immediately and thus, peak memory usage could be up to 3x.
|
|
"""
|
|
world_size = get_world_size()
|
|
if world_size == 1:
|
|
return [data]
|
|
|
|
# serialized to a Tensor
|
|
buffer = pickle.dumps(data)
|
|
# trying to optimize memory, but in fact, it's not guaranteed to be released
|
|
del data
|
|
storage = torch.ByteStorage.from_buffer(buffer)
|
|
del buffer
|
|
tensor = torch.ByteTensor(storage)
|
|
|
|
# obtain Tensor size of each rank
|
|
local_size = torch.LongTensor([tensor.numel()])
|
|
size_list = [torch.LongTensor([0]) for _ in range(world_size)]
|
|
dist.all_gather(size_list, local_size)
|
|
size_list = [int(size.item()) for size in size_list]
|
|
max_size = max(size_list)
|
|
|
|
if local_size != max_size:
|
|
padding = torch.ByteTensor(size=(max_size - local_size,))
|
|
tensor = torch.cat((tensor, padding), dim=0)
|
|
del padding
|
|
|
|
if is_main_process():
|
|
tensor_list = []
|
|
for _ in size_list:
|
|
tensor_list.append(torch.ByteTensor(size=(max_size,)))
|
|
dist.gather(tensor, gather_list=tensor_list, dst=0)
|
|
del tensor
|
|
else:
|
|
dist.gather(tensor, gather_list=[], dst=0)
|
|
del tensor
|
|
return
|
|
|
|
data_list = []
|
|
for tensor in tensor_list:
|
|
buffer = tensor.cpu().numpy().tobytes()
|
|
del tensor
|
|
data_list.append(pickle.loads(buffer))
|
|
del buffer
|
|
|
|
return data_list
|
|
|
|
|
|
def all_gather(data):
|
|
"""
|
|
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
|
Args:
|
|
data: any picklable object
|
|
Returns:
|
|
list[data]: list of data gathered from each rank
|
|
"""
|
|
world_size = get_world_size()
|
|
if world_size == 1:
|
|
return [data]
|
|
|
|
# serialized to a Tensor
|
|
buffer = pickle.dumps(data)
|
|
storage = torch.ByteStorage.from_buffer(buffer)
|
|
tensor = torch.ByteTensor(storage).to(device)
|
|
|
|
# obtain Tensor size of each rank
|
|
local_size = torch.LongTensor([tensor.numel()]).to(device)
|
|
size_list = [torch.LongTensor([0]).to(device) for _ in range(world_size)]
|
|
dist.all_gather(size_list, local_size)
|
|
size_list = [int(size.item()) for size in size_list]
|
|
max_size = max(size_list)
|
|
|
|
# receiving Tensor from all ranks
|
|
# we pad the tensor because torch all_gather does not support
|
|
# gathering tensors of different shapes
|
|
tensor_list = []
|
|
for _ in size_list:
|
|
tensor_list.append(torch.ByteTensor(size=(max_size,)).to(device))
|
|
if local_size != max_size:
|
|
padding = torch.ByteTensor(size=(max_size - local_size,)).to(device)
|
|
tensor = torch.cat((tensor, padding), dim=0)
|
|
dist.all_gather(tensor_list, tensor)
|
|
|
|
data_list = []
|
|
for size, tensor in zip(size_list, tensor_list):
|
|
buffer = tensor.cpu().numpy().tobytes()[:size]
|
|
data_list.append(pickle.loads(buffer))
|
|
|
|
return data_list
|
|
|
|
|
|
def reduce_dict(input_dict, average=True):
|
|
"""
|
|
Args:
|
|
input_dict (dict): all the values will be reduced
|
|
average (bool): whether to do average or sum
|
|
Reduce the values in the dictionary from all processes so that process with rank
|
|
0 has the averaged results. Returns a dict with the same fields as
|
|
input_dict, after reduction.
|
|
"""
|
|
world_size = get_world_size()
|
|
if world_size < 2:
|
|
return input_dict
|
|
with torch.no_grad():
|
|
names = []
|
|
values = []
|
|
# sort the keys so that they are consistent across processes
|
|
for k in sorted(input_dict.keys()):
|
|
names.append(k)
|
|
values.append(input_dict[k])
|
|
values = torch.stack(values, dim=0)
|
|
dist.reduce(values, dst=0)
|
|
if dist.get_rank() == 0 and average:
|
|
# only main process gets accumulated, so only divide by
|
|
# world_size in this case
|
|
values /= world_size
|
|
reduced_dict = {k: v for k, v in zip(names, values)}
|
|
return reduced_dict
|