diff --git a/src/llama.cpp b/src/llama.cpp index b7e91996..627024e0 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -5320,7 +5320,7 @@ bool llama_save_session_file(struct llama_context * ctx, const char * path_sessi // TODO: replace all non-fatal assertions with returned errors or exceptions struct llama_data_write { virtual void write(const void * src, size_t size) = 0; - virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0; + virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size, int il) = 0; virtual size_t get_size_written() = 0; virtual ~llama_data_write() = default; @@ -5449,7 +5449,7 @@ struct llama_data_write { for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * k_size_row; - write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size); + write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size, il); } } @@ -5469,7 +5469,7 @@ struct llama_data_write { for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * v_size_row; - write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size); + write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size, il); } } } @@ -5497,7 +5497,7 @@ struct llama_data_write { const size_t range_size = range.second - range.first; const size_t src_offset = (range.first + j * kv_size) * v_size_el; const size_t buf_size = range_size * v_size_el; - write_tensor_data(kv_self.v_l[il], src_offset, buf_size); + write_tensor_data(kv_self.v_l[il], src_offset, buf_size, il); } } } @@ -5871,7 +5871,7 @@ struct llama_data_write_dummy : llama_data_write { size_written += size; } - void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override { + void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size, int /* il */) override { size_written += size; } @@ -5885,7 +5885,11 @@ struct llama_data_write_buffer : llama_data_write { size_t buf_size = 0; size_t size_written = 0; - llama_data_write_buffer(uint8_t * p, size_t len) : ptr(p), buf_size(len) {} + const llama_model & model; + + std::vector aux_buffer; + + llama_data_write_buffer(uint8_t * p, size_t len, const llama_model & _model) : ptr(p), buf_size(len), model(_model) {} void write(const void * src, size_t size) override { if (size > buf_size) { @@ -5897,16 +5901,66 @@ struct llama_data_write_buffer : llama_data_write { buf_size -= size; } - void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override { + void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size, int il) override { if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } - ggml_backend_tensor_get(tensor, ptr, offset, size); + if (tensor->extra) { + write_tensor_data_split(tensor, offset, size, il); + } else { + ggml_backend_tensor_get(tensor, ptr, offset, size); + } ptr += size; size_written += size; buf_size -= size; } + void write_tensor_data_split(const ggml_tensor * tensor, size_t offset, size_t size, int il) { + auto tt = ggml_internal_get_type_traits(tensor->type); + if (tt.row_meta_size > 0) { + throw std::runtime_error(std::string{"Split cache for type "} + ggml_type_name(tensor->type) + " is not supported"); + } + GGML_ASSERT(il >= 0 && il < int(model.layers.size())); + auto kv = tensor->ne[1] > 1 ? model.layers[il].wk : model.layers[il].wv; + write_tensor_data_split(ptr, tensor, kv, aux_buffer, offset, size); + } + + static void write_tensor_data_split(uint8_t * ptr, const ggml_tensor * tensor, const ggml_tensor * kv, + std::vector & aux_buffer, size_t offset, size_t size) { + auto ne = kv->ne[1]; + auto full_row_size = ggml_row_size(tensor->type, ne); + GGML_ASSERT(offset % full_row_size == 0); + GGML_ASSERT(size % full_row_size == 0); + auto first_row = offset / full_row_size; + auto num_rows = size / full_row_size; + auto extra = (const ggml_split_tensor_t *)tensor->extra; + auto kv_extra = (const ggml_split_tensor_t *)kv->extra; + GGML_ASSERT(extra && kv_extra); + size_t split_offset = 0; + size_t total_size = 0; + for (int id = 0; id < extra->n_device; ++id) { + auto split = extra->splits[id]; + auto kv_split = kv_extra->splits[id]; + GGML_ASSERT((split && kv_split) || (!split && !kv_split)); + if (!split) continue; + GGML_ASSERT(split->type == tensor->type); + auto split_row_size = ggml_row_size(tensor->type, kv_split->ne[1]); + auto split_size = split_row_size * num_rows; + if (split_size > aux_buffer.size()) aux_buffer.resize(split_size); + ggml_backend_tensor_get(split, aux_buffer.data(), first_row*split_row_size, split_size); + auto dst = ptr + split_offset; + auto src = aux_buffer.data(); + for (int row = 0; row < (int)num_rows; ++row) { + std::memcpy(dst, src, split_row_size); + dst += full_row_size; + src += split_row_size; + } + split_offset += split_row_size; + total_size += split_row_size * num_rows; + } + GGML_ASSERT(total_size == size); + } + size_t get_size_written() override { return size_written; } @@ -5943,17 +5997,32 @@ struct llama_data_write_file : llama_data_write { llama_file * file; size_t size_written = 0; std::vector temp_buffer; + std::vector aux_buffer; - llama_data_write_file(llama_file * f) : file(f) {} + const llama_model & model; + + llama_data_write_file(llama_file * f, const llama_model & _model) : file(f), model(_model) {} void write(const void * src, size_t size) override { file->write_raw(src, size); size_written += size; } - void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override { + void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size, int il) override { temp_buffer.resize(size); - ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size); + if (tensor->extra) { + write_tensor_data_split(tensor, offset, size, il); + } else { + ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size); + } + write(temp_buffer.data(), temp_buffer.size()); + } + + void write_tensor_data_split(const struct ggml_tensor * tensor, size_t offset, size_t size, int il) { + GGML_ASSERT(il >= 0 && il < int(model.layers.size())); + auto kv = tensor->ne[1] > 1 ? model.layers[il].wk : model.layers[il].wv; + temp_buffer.resize(size); + llama_data_write_buffer::write_tensor_data_split(temp_buffer.data(), tensor, kv, aux_buffer, offset, size); write(temp_buffer.data(), temp_buffer.size()); } @@ -6016,7 +6085,7 @@ static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_da } size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst, size_t size) { - llama_data_write_buffer data_ctx(dst, size); + llama_data_write_buffer data_ctx(dst, size, ctx->model); try { return llama_state_get_data_internal(ctx, data_ctx); } catch (const std::exception & err) { @@ -6128,7 +6197,7 @@ static bool llama_state_save_file_internal(struct llama_context * ctx, const cha file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving - llama_data_write_file data_ctx(&file); + llama_data_write_file data_ctx(&file, ctx->model); llama_state_get_data_internal(ctx, data_ctx); return true; @@ -6157,7 +6226,7 @@ size_t llama_state_seq_get_size(struct llama_context * ctx, llama_seq_id seq_id) } size_t llama_state_seq_get_data(struct llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) { - llama_data_write_buffer data_ctx(dst, size); + llama_data_write_buffer data_ctx(dst, size, ctx->model); try { return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); } catch (const std::exception & err) { @@ -6195,7 +6264,7 @@ static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, con file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving - llama_data_write_file data_ctx(&file); + llama_data_write_file data_ctx(&file, ctx->model); llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); const size_t res = file.tell();