mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-19 04:40:09 +00:00
FlashMLA-2 (CPU): faster and smaller compute buffer size (#253)
* FlashMLA-2: eliminate intermediate f32 tensors This works on the CPU. PP performance is ~13% better for 16k tokens and compute buffer is quite a bit smaller. * FlashMLA-2: enable fast path only on the CPU for now I did implement the necessary ops on CUDA, but something is still wrong there, so for now we only use it when running CPU-only. * FlashMLA-2: slightly smaller computer buffer size --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
111
src/llama.cpp
111
src/llama.cpp
@@ -13630,45 +13630,94 @@ struct llm_build_context {
|
||||
|
||||
if (lctx.cparams.mla_attn > 1 && lctx.cparams.flash_attn && (pp_opt || lctx.cparams.mla_attn > 2)) {
|
||||
|
||||
// Hahaha, we need to convert the KV cache for this layer to f32 because the general purpose ML library ggml does not
|
||||
// provide ops on (almost) anything other than f32. In this case, the cache will be the second operand to a matrix
|
||||
// multiplication, which *must* be f32.
|
||||
auto kv_cache_view = ggml_view_2d(ctx0, kv_self.kv_l[il], kv_self.kv_l[il]->ne[0], n_kv, kv_self.kv_l[il]->nb[1], 0);
|
||||
auto kv_cache_view_f32 = ggml_cast(ctx0, kv_cache_view, GGML_TYPE_F32);
|
||||
cb(kv_cache_view_f32, "kv_cache_view_f32", il);
|
||||
|
||||
// The no- and rotational position encoding portions of the KV cache
|
||||
auto kv_cache_nope = ggml_view_2d(ctx0, kv_cache_view_f32, kv_lora_rank, n_kv, kv_cache_view_f32->nb[1], 0);
|
||||
auto kv_cache_rope = ggml_view_3d(ctx0, kv_cache_view_f32, n_embd_head_qk_rope, 1, n_kv,
|
||||
kv_cache_view_f32->nb[1], kv_cache_view_f32->nb[1], ggml_row_size(kv_cache_view_f32->type, kv_lora_rank));
|
||||
ggml_tensor * k;
|
||||
ggml_tensor * v;
|
||||
|
||||
auto kv_f32 = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cache_nope);
|
||||
cb(kv_f32, "kv_f32", il);
|
||||
// For now this only works in the CPU implementation, so we only use it if there is just the CPU backend.
|
||||
// If the code was compiled with CUDA (and/or Metal, Vulkan, whatever) support, this branch will not
|
||||
// be taken even if no layers were offloaded to the GPU.
|
||||
if (lctx.backends.size() == 1 && lctx.backends.front() == lctx.backend_cpu) {
|
||||
|
||||
auto k_nope_f32 = ggml_view_3d(ctx0, kv_f32, n_embd_head_qk_nope, n_kv, n_head,
|
||||
ggml_row_size(kv_f32->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||||
ggml_row_size(kv_f32->type, n_embd_head_qk_nope + hparams.n_embd_head_v), 0);
|
||||
cb(k_nope_f32, "k_nope_f32", il);
|
||||
auto kv_cache_nope = ggml_view_2d(ctx0, kv_self.kv_l[il], kv_lora_rank, n_kv, kv_self.kv_l[il]->nb[1], 0);
|
||||
|
||||
ggml_tensor repeater;
|
||||
repeater.ne[0] = n_embd_head_qk_rope; repeater.ne[1] = n_head; repeater.ne[2] = n_kv; repeater.ne[3] = 1;
|
||||
auto k_rope_f32 = ggml_permute(ctx0, ggml_repeat(ctx0, kv_cache_rope, &repeater), 0, 2, 1, 3);
|
||||
cb(k_rope_f32, "k_rope_f32", il);
|
||||
auto kv_f32 = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cache_nope);
|
||||
cb(kv_f32, "kv_f32", il);
|
||||
|
||||
auto k_f32 = ggml_concat(ctx0, k_nope_f32, k_rope_f32, 0);
|
||||
cb(k_f32, "k_f32", il);
|
||||
auto v_f32 = ggml_view_3d(ctx0, kv_f32, hparams.n_embd_head_v, n_kv, n_head,
|
||||
ggml_row_size(kv_f32->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||||
ggml_row_size(kv_f32->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
|
||||
ggml_row_size(kv_f32->type, n_embd_head_qk_nope));
|
||||
cb(v_f32, "v_f32", il);
|
||||
|
||||
auto k = ggml_cast(ctx0, k_f32, kv_self.kv_l[il]->type);
|
||||
cb(k, "k", il);
|
||||
v = ggml_cast(ctx0, v_f32, kv_self.kv_l[il]->type);
|
||||
cb(v, "v", il);
|
||||
|
||||
auto v_f32 = ggml_view_3d(ctx0, kv_f32, hparams.n_embd_head_v, n_kv, n_head,
|
||||
ggml_row_size(kv_f32->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||||
ggml_row_size(kv_f32->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
|
||||
ggml_row_size(kv_f32->type, n_embd_head_qk_nope));
|
||||
cb(v_f32, "v_f32", il);
|
||||
auto k_nope_f32 = ggml_view_3d(ctx0, kv_f32, n_embd_head_qk_nope, n_kv, n_head,
|
||||
ggml_row_size(kv_f32->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||||
ggml_row_size(kv_f32->type, n_embd_head_qk_nope + hparams.n_embd_head_v), 0);
|
||||
cb(k_nope_f32, "k_nope_f32", il);
|
||||
|
||||
auto v = ggml_cast(ctx0, v_f32, kv_self.kv_l[il]->type);
|
||||
cb(v, "v", il);
|
||||
auto k_nope = ggml_cast(ctx0, k_nope_f32, kv_self.kv_l[il]->type);
|
||||
cb(k_nope, "k_nope", il);
|
||||
|
||||
ggml_build_forward_expand(gf, k_nope);
|
||||
ggml_build_forward_expand(gf, v);
|
||||
|
||||
auto kv_cache_rope = ggml_view_3d(ctx0, kv_self.kv_l[il], n_embd_head_qk_rope, n_kv, 1,
|
||||
kv_self.kv_l[il]->nb[1], kv_self.kv_l[il]->nb[2], ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank));
|
||||
|
||||
ggml_tensor repeater;
|
||||
repeater.ne[0] = n_embd_head_qk_rope; repeater.ne[1] = n_kv; repeater.ne[2] = n_head; repeater.ne[3] = 1;
|
||||
auto k_rope = ggml_repeat(ctx0, kv_cache_rope, &repeater);
|
||||
cb(k_rope, "k_rope", il);
|
||||
|
||||
k = ggml_concat(ctx0, k_nope, k_rope, 0);
|
||||
cb(k, "k", il);
|
||||
|
||||
ggml_build_forward_expand(gf, k);
|
||||
}
|
||||
else {
|
||||
// Hahaha, we need to convert the KV cache for this layer to f32 because the general purpose ML library ggml does not
|
||||
// provide ops on (almost) anything other than f32. In this case, the cache will be the second operand to a matrix
|
||||
// multiplication, which *must* be f32.
|
||||
auto kv_cache_view = ggml_view_2d(ctx0, kv_self.kv_l[il], kv_self.kv_l[il]->ne[0], n_kv, kv_self.kv_l[il]->nb[1], 0);
|
||||
auto kv_cache_view_f32 = ggml_cast(ctx0, kv_cache_view, GGML_TYPE_F32);
|
||||
cb(kv_cache_view_f32, "kv_cache_view_f32", il);
|
||||
|
||||
// The no- and rotational position encoding portions of the KV cache
|
||||
auto kv_cache_nope = ggml_view_2d(ctx0, kv_cache_view_f32, kv_lora_rank, n_kv, kv_cache_view_f32->nb[1], 0);
|
||||
auto kv_cache_rope = ggml_view_3d(ctx0, kv_cache_view_f32, n_embd_head_qk_rope, 1, n_kv,
|
||||
kv_cache_view_f32->nb[1], kv_cache_view_f32->nb[1], ggml_row_size(kv_cache_view_f32->type, kv_lora_rank));
|
||||
|
||||
auto kv_f32 = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cache_nope);
|
||||
cb(kv_f32, "kv_f32", il);
|
||||
|
||||
auto k_nope_f32 = ggml_view_3d(ctx0, kv_f32, n_embd_head_qk_nope, n_kv, n_head,
|
||||
ggml_row_size(kv_f32->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||||
ggml_row_size(kv_f32->type, n_embd_head_qk_nope + hparams.n_embd_head_v), 0);
|
||||
cb(k_nope_f32, "k_nope_f32", il);
|
||||
|
||||
ggml_tensor repeater;
|
||||
repeater.ne[0] = n_embd_head_qk_rope; repeater.ne[1] = n_head; repeater.ne[2] = n_kv; repeater.ne[3] = 1;
|
||||
auto k_rope_f32 = ggml_permute(ctx0, ggml_repeat(ctx0, kv_cache_rope, &repeater), 0, 2, 1, 3);
|
||||
cb(k_rope_f32, "k_rope_f32", il);
|
||||
|
||||
auto k_f32 = ggml_concat(ctx0, k_nope_f32, k_rope_f32, 0);
|
||||
cb(k_f32, "k_f32", il);
|
||||
|
||||
k = ggml_cast(ctx0, k_f32, kv_self.kv_l[il]->type);
|
||||
cb(k, "k", il);
|
||||
|
||||
auto v_f32 = ggml_view_3d(ctx0, kv_f32, hparams.n_embd_head_v, n_kv, n_head,
|
||||
ggml_row_size(kv_f32->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||||
ggml_row_size(kv_f32->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
|
||||
ggml_row_size(kv_f32->type, n_embd_head_qk_nope));
|
||||
cb(v_f32, "v_f32", il);
|
||||
|
||||
v = ggml_cast(ctx0, v_f32, kv_self.kv_l[il]->type);
|
||||
cb(v, "v", il);
|
||||
}
|
||||
|
||||
auto q = ggml_concat(ctx0, q_nope, q_rope, 0);
|
||||
q = ggml_permute(ctx0, q, 0, 2, 1, 3);
|
||||
|
||||
Reference in New Issue
Block a user