CUDA: Fix FA for Pascal GPU (#1036)

Co-authored-by: firecoperana <firecoperana>
This commit is contained in:
firecoperana
2025-12-05 09:42:14 -06:00
committed by GitHub
parent 2125f68636
commit 42e4c61243

View File

@@ -11,7 +11,7 @@
#define FATTN_KQ_STRIDE_TILE_F32 32
template<int Dk, int Dv, int ncols, int nwarps, int parallel_blocks, bool use_softcap> // D == head size
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@@ -52,9 +52,9 @@ static __global__ void flash_attn_tile_ext_f32(
const int ne1,
const int ne2,
const int ne3) {
static_assert(Dk == Dv || (Dk == 192 && Dv == 128) || (Dk == 576 && Dv == 512));
// Skip unused kernel variants for faster compilation:
if (use_softcap && !(Dk == 128 || Dk == 256)) {
if (use_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
@@ -70,22 +70,15 @@ static __global__ void flash_attn_tile_ext_f32(
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + ne11*ic0;
const int stride_K2 = nb11 / sizeof(half2);
const int stride_V2 = nb12 / sizeof(half2);
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
// TODO: is it Dk or Dv or both that need to be multiple of 2*WARP_SIZE ?
// let's assume it is is both.
static_assert(Dk % (2*WARP_SIZE) == 0, "Dk not divisible by 2*WARP_SIZE == 64.");
static_assert(Dv % (2*WARP_SIZE) == 0, "Dv not divisible by 2*WARP_SIZE == 64.");
constexpr int Dkv = Dk < Dv ? Dv : Dk; // let's use this when we don't understand if it is Dk or Dv
static_assert(D % (2 * WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
// This is being used to store either K or V data. Hence we need max(Dk, Dv) as the dimension
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][Dkv + 1]; // Pad D to avoid memory bank conflicts.
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
float2 * KV_tmp2 = (float2 *) KV_tmp;
float kqmax[ncols/nwarps];
@@ -95,16 +88,16 @@ static __global__ void flash_attn_tile_ext_f32(
}
float kqsum[ncols/nwarps] = {0.0f};
float2 VKQ[ncols/nwarps][(Dv/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
// Convert Q to half2 and store in registers:
__shared__ float Q_f[ncols][Dk];
__shared__ float Q_f[ncols][D];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < Dk; i0 += 2*WARP_SIZE) {
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
@@ -128,8 +121,8 @@ static __global__ void flash_attn_tile_ext_f32(
const int i_KQ = i_KQ_0 + threadIdx.y;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < Dk; k_KQ_0 += 2*WARP_SIZE) {
const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_K2 + k_KQ_0/2 + threadIdx.x];
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
}
@@ -140,7 +133,7 @@ static __global__ void flash_attn_tile_ext_f32(
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
#pragma unroll
for (int k_KQ = 0; k_KQ < Dk; ++k_KQ) {
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
float Q_k[ncols/nwarps];
@@ -209,7 +202,7 @@ static __global__ void flash_attn_tile_ext_f32(
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
#pragma unroll
for (int i0 = 0; i0 < Dv/2; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
}
@@ -222,11 +215,11 @@ static __global__ void flash_attn_tile_ext_f32(
const int k = k0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < Dv/2; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
KV_tmp2[k*(Dv/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_V2 + i]);
KV_tmp2[k*(Dv/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_V2 + i]);
KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)* stride_KV2 + i]);
KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)* stride_KV2 + i]);
}
}
@@ -234,14 +227,14 @@ static __global__ void flash_attn_tile_ext_f32(
#pragma unroll
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
float2 V_k[(Dv/2)/WARP_SIZE];
float2 V_k[(D/2)/WARP_SIZE];
float KQ_k[ncols/nwarps];
#pragma unroll
for (int i0 = 0; i0 < Dv/2; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
V_k[i0/WARP_SIZE] = KV_tmp2[k*(Dv/2) + i];
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
@@ -251,7 +244,7 @@ static __global__ void flash_attn_tile_ext_f32(
}
#pragma unroll
for (int i0 = 0; i0 < Dv/2; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
@@ -275,7 +268,7 @@ static __global__ void flash_attn_tile_ext_f32(
kqsum_j = warp_reduce_sum(kqsum_j);
#pragma unroll
for (int i00 = 0; i00 < Dv; i00 += 2*WARP_SIZE) {
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
const int i0 = i00 + 2*threadIdx.x;
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
@@ -284,8 +277,8 @@ static __global__ void flash_attn_tile_ext_f32(
dst_val.y /= kqsum_j;
}
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
dst[j_dst*Dv*gridDim.y + Dv*blockIdx.y + i0 + 0] = dst_val.x;
dst[j_dst*Dv*gridDim.y + Dv*blockIdx.y + i0 + 1] = dst_val.y;
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x;
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y;
}
if (parallel_blocks != 1 && threadIdx.x == 0) {
@@ -301,13 +294,13 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, D, cols_per_block, nwarps, parallel_blocks, use_softcap>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_softcap>;
launch_fattn<D, D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, D, cols_per_block, nwarps, parallel_blocks, use_softcap>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_softcap>;
launch_fattn<D, D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
default: {