mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
Async compute graph evaluation (2 or more GPUs) (#1089)
* WIP: absorb adding input into std_attn and std_ffn * WIP: NCCL infra * WIP: add reduce and fake_cpy ops * WIP * WIP: graph appears to work, layer is broken * WIP: Qwen3-MoE works with graph, layer still broken * WIP: GLM-4.5 graph works * WIP: fix sm layer (dense) * WIP: fix sm layer (MoE) * WIP: fast PP with bespoke 4-GPU NCCL I guess, I'm not using NCCL the right way as PP is very low with a single communicator group for 3 or more GPUs. But if I create 4 communicator groups for pairs of GPUs (0,1, 2,3, 0,2, 1,3) and use that, PP is fast: I'm hitting 1500 t/s for L3-70B on the 4x3090 system, which is ~20% better than the previous sm graph without NCCL. But that cannot be the solution (I cannot be creating pairwise communicators and associated logic for every possible number of GPUs). * WIP: Cohere2 * Explicitely set device * Bespoke 3-GPU case * WIP * Do not repeat get_rows multiple times * Fix 3 GPUs * OK, let's leave it in * Simple async * This sync seems enough * Only do async for 4 or more backends With 2 GPUs (so, 3 backends) not using async is slightly faster * Scheduler changes * Use OpenMP if available Surprisingly (at least to me), this is quite a bit faster than std::thread and std::barrier. GLM-4.5-AIR with 4 GPUs is now at 105 t/s at zero context! * Do not use OpenMP if there are tensor overrides * Set omp max active levels * Be more careful with having set the device before using a stream * Command line option to turn on async. Set to false by defualt for now --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
@@ -211,7 +211,7 @@ extern "C" {
|
||||
// enable or disable op offload for a given op
|
||||
GGML_API void ggml_backend_sched_set_op_offload(ggml_backend_sched_t sched, enum ggml_op op, bool on_or_off);
|
||||
GGML_API void ggml_backend_sched_set_only_active_experts(ggml_backend_sched_t sched, bool on_or_off);
|
||||
GGML_API void ggml_backend_sched_set_split_mode_graph(ggml_backend_sched_t sched, bool on_or_off);
|
||||
GGML_API void ggml_backend_sched_set_split_mode_graph(ggml_backend_sched_t sched, bool on_or_off, bool async);
|
||||
GGML_API void ggml_backend_sched_set_max_extra_alloc(ggml_backend_sched_t sched, int extra_alloc_MiB);
|
||||
|
||||
//
|
||||
|
||||
@@ -14,6 +14,11 @@
|
||||
#include <set>
|
||||
#include <array>
|
||||
#include <chrono>
|
||||
#include <barrier>
|
||||
#include <thread>
|
||||
#ifdef GGML_USE_OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#define IK_PRINT_TIMING 0
|
||||
|
||||
@@ -1169,9 +1174,17 @@ struct ggml_backend_sched {
|
||||
|
||||
uint32_t op_offload[(GGML_OP_COUNT + 31)/32];
|
||||
|
||||
std::vector<std::thread> workers;
|
||||
std::vector<ggml_status> statuses;
|
||||
std::vector<std::vector<ggml_backend_sched_split*>> backend_splits;
|
||||
std::array<bool, GGML_SCHED_MAX_BACKENDS> needs_sync;
|
||||
std::array<bool, GGML_SCHED_MAX_BACKENDS> own_cpy;
|
||||
|
||||
bool only_active_experts;
|
||||
bool split_mode_graph;
|
||||
bool is_async = false;
|
||||
bool debug;
|
||||
bool has_reduce = false;
|
||||
};
|
||||
|
||||
void ggml_backend_sched_set_op_offload(ggml_backend_sched_t sched, enum ggml_op op, bool on_or_off) {
|
||||
@@ -1196,9 +1209,10 @@ void ggml_backend_sched_set_only_active_experts(ggml_backend_sched_t sched, bool
|
||||
sched->only_active_experts = on_or_off;
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_split_mode_graph(ggml_backend_sched_t sched, bool on_or_off) {
|
||||
void ggml_backend_sched_set_split_mode_graph(ggml_backend_sched_t sched, bool on_or_off, bool async) {
|
||||
if (!sched) return;
|
||||
sched->split_mode_graph = on_or_off;
|
||||
sched->is_async = async;
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_max_extra_alloc(ggml_backend_sched_t sched, int extra_alloc_MiB) {
|
||||
@@ -1393,6 +1407,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
sched->n_splits = 0;
|
||||
sched->n_graph_inputs = 0;
|
||||
sched->is_reset = false;
|
||||
sched->has_reduce = false;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/* .mem_size = */ sched->context_buffer_size,
|
||||
@@ -1697,6 +1712,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
|
||||
// check if we should start a new split based on the sources of the current node
|
||||
bool need_new_split = false;
|
||||
if (node->op == GGML_OP_REDUCE) {
|
||||
sched->has_reduce = true;
|
||||
}
|
||||
if ((node->op == GGML_OP_ADD && node->op_params[0] == 0xff) ||
|
||||
node->op == GGML_OP_REDUCE ||
|
||||
node->op == GGML_OP_FAKE_CPY ||
|
||||
@@ -2083,89 +2101,206 @@ static void ggml_backend_sched_copy_inputs(ggml_backend_sched_t sched, ggml_back
|
||||
}
|
||||
}
|
||||
|
||||
static ggml_status ggml_backend_sched_eval(ggml_backend_sched_t sched, ggml_backend_t split_backend, ggml_backend_sched_split * split) {
|
||||
if (!sched->callback_eval) {
|
||||
#if IK_PRINT_TIMING
|
||||
int64_t tim2 = ggml_time_us();
|
||||
printf("%s(.1.): %d us\n", __func__, (int)(tim2-tim1));
|
||||
#endif
|
||||
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
|
||||
if (ec != GGML_STATUS_SUCCESS) {
|
||||
return ec;
|
||||
}
|
||||
} else {
|
||||
// similar to ggml_backend_compare_graph_backend
|
||||
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
|
||||
struct ggml_tensor * t = split->graph.nodes[j0];
|
||||
|
||||
// check if the user needs data from this node
|
||||
bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
||||
|
||||
int j1 = j0;
|
||||
|
||||
// determine the range [j0, j1] of nodes that can be computed together
|
||||
while (!need && j1 < split->graph.n_nodes - 1) {
|
||||
t = split->graph.nodes[++j1];
|
||||
need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
||||
}
|
||||
|
||||
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
|
||||
|
||||
#if IK_PRINT_TIMING
|
||||
int64_t tim2 = ggml_time_us();
|
||||
printf("%s(.2.): %d us\n", __func__, (int)(tim2-tim1));
|
||||
#endif
|
||||
|
||||
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
|
||||
if (ec != GGML_STATUS_SUCCESS) {
|
||||
return ec;
|
||||
}
|
||||
|
||||
// TODO: pass backend to the callback, then the user can decide if they want to synchronize
|
||||
ggml_backend_synchronize(split_backend);
|
||||
|
||||
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
|
||||
break;
|
||||
}
|
||||
|
||||
j0 = j1;
|
||||
}
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
|
||||
std::array<bool, GGML_SCHED_MAX_BACKENDS> needs_sync{{true}};
|
||||
std::array<bool, GGML_SCHED_MAX_BACKENDS> own_cpy{{false}};
|
||||
for (auto & item : sched->needs_sync) item = true;
|
||||
|
||||
if (sched->split_mode_graph) {
|
||||
auto tensor_size = [] (const ggml_tensor * t) {
|
||||
auto nbytes = ggml_nbytes(t);
|
||||
nbytes = 256*((nbytes + 255)/256);
|
||||
return nbytes;
|
||||
};
|
||||
//auto tim1 = std::chrono::steady_clock::now();
|
||||
std::vector<std::vector<ggml_backend_sched_split*>> backend_splits(sched->n_backends);
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
backend_splits[sched->splits[i].backend_id].push_back(&sched->splits[i]);
|
||||
if (sched->is_async && sched->n_backends > 2 && sched->split_mode_graph && sched->has_reduce) {
|
||||
|
||||
for (auto & s : sched->statuses) s = GGML_STATUS_SUCCESS;
|
||||
|
||||
bool work_done = false;
|
||||
#ifdef GGML_USE_OPENMP
|
||||
if (int nlevels = omp_get_max_active_levels(); nlevels < 2) {
|
||||
omp_set_max_active_levels(nlevels+1);
|
||||
//printf("%s: Setting omp max active levels to 2\n", __func__);
|
||||
}
|
||||
for (int backend_id = 0; backend_id < sched->n_backends; ++backend_id) {
|
||||
if (ggml_backend_is_cpu(ggml_backend_sched_get_backend(sched, backend_id))) continue;
|
||||
if (backend_splits[backend_id].empty()) continue;
|
||||
size_t input_size = 0;
|
||||
size_t max_input_size = 0;
|
||||
int last_split = 0;
|
||||
bool can_alloc = true;
|
||||
for (int i = 0; i < int(backend_splits[backend_id].size()); ++i) {
|
||||
auto split = backend_splits[backend_id][i];
|
||||
if (split->n_inputs < 1) continue;
|
||||
size_t this_size = 0;
|
||||
for (int j = 0; j < split->n_inputs; ++j) {
|
||||
if (!ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
|
||||
this_size += tensor_size(split->inputs[j]);
|
||||
}
|
||||
}
|
||||
if (input_size + this_size > sched->max_extra_alloc) {
|
||||
if (i - last_split < 3) {
|
||||
can_alloc = false;
|
||||
bool has_cpu_work = false;
|
||||
for (int i = 0; i < sched->n_backends; ++i) {
|
||||
if (!sched->backend_splits[i].empty()) {
|
||||
auto split = sched->backend_splits[i].front();
|
||||
if (ggml_backend_is_cpu(sched->backends[split->backend_id])) {
|
||||
//printf("CPU backend %d has %d splits\n", split->backend_id, (int)sched->backend_splits[i].size());
|
||||
if (sched->backend_splits[i].size() > 1) {
|
||||
has_cpu_work = true;
|
||||
break;
|
||||
}
|
||||
max_input_size = std::max(max_input_size, input_size);
|
||||
input_size = 0;
|
||||
last_split = i - 1;
|
||||
}
|
||||
input_size += this_size;
|
||||
}
|
||||
max_input_size = std::max(max_input_size, input_size);
|
||||
if (!can_alloc || !max_input_size) continue;
|
||||
if (sched->input_memory_bufs[backend_id] && sched->input_memory_bufs[backend_id]->size < max_input_size) {
|
||||
ggml_backend_buffer_free(sched->input_memory_bufs[backend_id]);
|
||||
sched->input_memory_bufs[backend_id] = nullptr;
|
||||
}
|
||||
if (!sched->input_memory_bufs[backend_id]) {
|
||||
sched->input_memory_bufs[backend_id] = ggml_backend_alloc_buffer(sched->backends[backend_id], max_input_size);
|
||||
}
|
||||
auto ptr = (char *)ggml_backend_buffer_get_base(sched->input_memory_bufs[backend_id]);
|
||||
input_size = 0;
|
||||
for (int i = 0; i < int(backend_splits[backend_id].size()); ++i) {
|
||||
auto split = backend_splits[backend_id][i];
|
||||
size_t this_size = 0;
|
||||
for (int j = 0; j < split->n_inputs; ++j) {
|
||||
if (!ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
|
||||
this_size += tensor_size(split->inputs[j]);
|
||||
}
|
||||
}
|
||||
if (!has_cpu_work) {
|
||||
#pragma omp parallel num_threads(sched->n_backends)
|
||||
{
|
||||
|
||||
int ith = omp_get_thread_num();
|
||||
|
||||
struct ggml_backend_sched_split * splits = sched->splits;
|
||||
|
||||
std::vector<int32_t> ids;
|
||||
std::vector<uint32_t> unique_ids;
|
||||
ggml_tensor * last_ids_tensor = nullptr;
|
||||
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
#if IK_PRINT_TIMING
|
||||
int64_t tim1 = ggml_time_us();
|
||||
#endif
|
||||
struct ggml_backend_sched_split * split = &splits[i];
|
||||
int split_backend_id = split->backend_id;
|
||||
ggml_backend_t split_backend = sched->backends[split_backend_id];
|
||||
|
||||
bool needs_barrier = split->n_inputs > 0 || split->graph.nodes[0]->op == GGML_OP_REDUCE;
|
||||
|
||||
if (needs_barrier) {
|
||||
#pragma omp barrier
|
||||
}
|
||||
if (input_size + this_size > max_input_size) {
|
||||
ptr = (char *)ggml_backend_buffer_get_base(sched->input_memory_bufs[backend_id]);
|
||||
input_size = 0;
|
||||
}
|
||||
for (int j = 0; j < split->n_inputs; ++j) {
|
||||
if (ggml_backend_buffer_is_host(split->inputs[j]->buffer)) continue;
|
||||
auto input_cpy = tensor_copy(split->inputs[j], backend_id, sched->cur_copy);
|
||||
for (int k = 0; k < split->graph.n_nodes; ++k) {
|
||||
auto node = split->graph.nodes[k];
|
||||
for (int l = 0; l < GGML_MAX_SRC; ++l) {
|
||||
if (node->src[l] && node->src[l]->data == input_cpy->data) node->src[l]->data = ptr;
|
||||
|
||||
if (ith == split_backend_id) {
|
||||
// copy the input tensors to the split backend
|
||||
ggml_backend_sched_copy_inputs(sched, split, sched->needs_sync, ids, unique_ids, last_ids_tensor);
|
||||
|
||||
if (split->n_inputs > 0 && !sched->own_cpy[split_backend_id]) {
|
||||
sched->needs_sync[split_backend_id] = true;
|
||||
} else {
|
||||
for (int j = 0; j < split->n_inputs; ++j) {
|
||||
if (ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
|
||||
sched->needs_sync[split_backend_id] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
input_cpy->data = ptr;
|
||||
ptr += tensor_size(split->inputs[j]);
|
||||
sched->statuses[ith] = ggml_backend_sched_eval(sched, split_backend, split);
|
||||
}
|
||||
|
||||
if (split->graph.nodes[0]->op == GGML_OP_REDUCE) {
|
||||
#pragma omp barrier
|
||||
}
|
||||
|
||||
// record the event of this copy
|
||||
if (split->n_inputs > 0) {
|
||||
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
||||
ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
|
||||
}
|
||||
}
|
||||
input_size += this_size;
|
||||
}
|
||||
needs_sync[backend_id] = false;
|
||||
own_cpy[backend_id] = true;
|
||||
}
|
||||
work_done = true;
|
||||
}
|
||||
#endif
|
||||
if (!work_done) {
|
||||
std::barrier barrier(sched->n_backends, [] () {});
|
||||
auto compute = [sched, &barrier] (int ith) {
|
||||
|
||||
struct ggml_backend_sched_split * splits = sched->splits;
|
||||
|
||||
std::vector<int32_t> ids;
|
||||
std::vector<uint32_t> unique_ids;
|
||||
ggml_tensor * last_ids_tensor = nullptr;
|
||||
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
#if IK_PRINT_TIMING
|
||||
int64_t tim1 = ggml_time_us();
|
||||
#endif
|
||||
struct ggml_backend_sched_split * split = &splits[i];
|
||||
int split_backend_id = split->backend_id;
|
||||
ggml_backend_t split_backend = sched->backends[split_backend_id];
|
||||
|
||||
bool needs_barrier = split->n_inputs > 0 || split->graph.nodes[0]->op == GGML_OP_REDUCE;
|
||||
|
||||
if (needs_barrier) {
|
||||
barrier.arrive_and_wait();
|
||||
}
|
||||
|
||||
if (ith == split_backend_id) {
|
||||
// copy the input tensors to the split backend
|
||||
ggml_backend_sched_copy_inputs(sched, split, sched->needs_sync, ids, unique_ids, last_ids_tensor);
|
||||
|
||||
if (split->n_inputs > 0 && !sched->own_cpy[split_backend_id]) {
|
||||
sched->needs_sync[split_backend_id] = true;
|
||||
} else {
|
||||
for (int j = 0; j < split->n_inputs; ++j) {
|
||||
if (ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
|
||||
sched->needs_sync[split_backend_id] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
sched->statuses[ith] = ggml_backend_sched_eval(sched, split_backend, split);
|
||||
}
|
||||
|
||||
if (split->graph.nodes[0]->op == GGML_OP_REDUCE) {
|
||||
barrier.arrive_and_wait();
|
||||
}
|
||||
//if (needs_barrier) {
|
||||
// barrier.arrive_and_wait();
|
||||
//}
|
||||
|
||||
// record the event of this copy
|
||||
if (split->n_inputs > 0) {
|
||||
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
||||
ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
for (int i = 0; i < sched->n_backends; ++i) sched->workers.emplace_back(compute, i);
|
||||
for (auto & w : sched->workers) w.join();
|
||||
sched->workers.clear();
|
||||
}
|
||||
for (auto status : sched->statuses) {
|
||||
if (status != GGML_STATUS_SUCCESS) return status;
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
}
|
||||
|
||||
struct ggml_backend_sched_split * splits = sched->splits;
|
||||
@@ -2183,63 +2318,20 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
ggml_backend_t split_backend = sched->backends[split_backend_id];
|
||||
|
||||
// copy the input tensors to the split backend
|
||||
ggml_backend_sched_copy_inputs(sched, split, needs_sync, ids, unique_ids, last_ids_tensor);
|
||||
ggml_backend_sched_copy_inputs(sched, split, sched->needs_sync, ids, unique_ids, last_ids_tensor);
|
||||
|
||||
if (split->n_inputs > 0 && !own_cpy[split_backend_id]) {
|
||||
needs_sync[split_backend_id] = true;
|
||||
if (split->n_inputs > 0 && !sched->own_cpy[split_backend_id]) {
|
||||
sched->needs_sync[split_backend_id] = true;
|
||||
} else {
|
||||
for (int j = 0; j < split->n_inputs; ++j) {
|
||||
if (ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
|
||||
needs_sync[split_backend_id] = true;
|
||||
sched->needs_sync[split_backend_id] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!sched->callback_eval) {
|
||||
#if IK_PRINT_TIMING
|
||||
int64_t tim2 = ggml_time_us();
|
||||
printf("%s(.1.): %d us\n", __func__, (int)(tim2-tim1));
|
||||
#endif
|
||||
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
|
||||
if (ec != GGML_STATUS_SUCCESS) {
|
||||
return ec;
|
||||
}
|
||||
} else {
|
||||
// similar to ggml_backend_compare_graph_backend
|
||||
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
|
||||
struct ggml_tensor * t = split->graph.nodes[j0];
|
||||
|
||||
// check if the user needs data from this node
|
||||
bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
||||
|
||||
int j1 = j0;
|
||||
|
||||
// determine the range [j0, j1] of nodes that can be computed together
|
||||
while (!need && j1 < split->graph.n_nodes - 1) {
|
||||
t = split->graph.nodes[++j1];
|
||||
need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
||||
}
|
||||
|
||||
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
|
||||
|
||||
#if IK_PRINT_TIMING
|
||||
int64_t tim2 = ggml_time_us();
|
||||
printf("%s(.2.): %d us\n", __func__, (int)(tim2-tim1));
|
||||
#endif
|
||||
|
||||
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
|
||||
if (ec != GGML_STATUS_SUCCESS) {
|
||||
return ec;
|
||||
}
|
||||
|
||||
// TODO: pass backend to the callback, then the user can decide if they want to synchronize
|
||||
ggml_backend_synchronize(split_backend);
|
||||
|
||||
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
|
||||
break;
|
||||
}
|
||||
|
||||
j0 = j1;
|
||||
}
|
||||
auto ec = ggml_backend_sched_eval(sched, split_backend, split);
|
||||
if (ec != GGML_STATUS_SUCCESS) {
|
||||
return ec;
|
||||
}
|
||||
|
||||
// record the event of this copy
|
||||
@@ -2305,6 +2397,10 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
|
||||
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
|
||||
|
||||
sched->workers.reserve(sched->n_backends);
|
||||
sched->statuses.resize(sched->n_backends, GGML_STATUS_SUCCESS);
|
||||
sched->backend_splits.resize(sched->n_backends);
|
||||
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
return sched;
|
||||
@@ -2366,15 +2462,101 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
||||
return true;
|
||||
}
|
||||
|
||||
static void ggml_sched_prepare_graph(ggml_backend_sched_t sched) {
|
||||
|
||||
for (auto & item : sched->own_cpy ) item = false;
|
||||
for (auto & item : sched->needs_sync) item = true;
|
||||
|
||||
if (sched->split_mode_graph) {
|
||||
auto tensor_size = [] (const ggml_tensor * t) {
|
||||
auto nbytes = ggml_nbytes(t);
|
||||
nbytes = 256*((nbytes + 255)/256);
|
||||
return nbytes;
|
||||
};
|
||||
//auto tim1 = std::chrono::steady_clock::now();
|
||||
for (auto & b : sched->backend_splits) b.clear();
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
sched->backend_splits[sched->splits[i].backend_id].push_back(&sched->splits[i]);
|
||||
}
|
||||
for (int backend_id = 0; backend_id < sched->n_backends; ++backend_id) {
|
||||
if (ggml_backend_is_cpu(ggml_backend_sched_get_backend(sched, backend_id))) continue;
|
||||
if (sched->backend_splits[backend_id].empty()) continue;
|
||||
size_t input_size = 0;
|
||||
size_t max_input_size = 0;
|
||||
int last_split = 0;
|
||||
bool can_alloc = true;
|
||||
for (int i = 0; i < int(sched->backend_splits[backend_id].size()); ++i) {
|
||||
auto split = sched->backend_splits[backend_id][i];
|
||||
if (split->n_inputs < 1) continue;
|
||||
size_t this_size = 0;
|
||||
for (int j = 0; j < split->n_inputs; ++j) {
|
||||
if (!ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
|
||||
this_size += tensor_size(split->inputs[j]);
|
||||
}
|
||||
}
|
||||
if (input_size + this_size > sched->max_extra_alloc) {
|
||||
if (i - last_split < 3) {
|
||||
can_alloc = false;
|
||||
break;
|
||||
}
|
||||
max_input_size = std::max(max_input_size, input_size);
|
||||
input_size = 0;
|
||||
last_split = i - 1;
|
||||
}
|
||||
input_size += this_size;
|
||||
}
|
||||
max_input_size = std::max(max_input_size, input_size);
|
||||
if (!can_alloc || !max_input_size) continue;
|
||||
if (sched->input_memory_bufs[backend_id] && sched->input_memory_bufs[backend_id]->size < max_input_size) {
|
||||
ggml_backend_buffer_free(sched->input_memory_bufs[backend_id]);
|
||||
sched->input_memory_bufs[backend_id] = nullptr;
|
||||
}
|
||||
if (!sched->input_memory_bufs[backend_id]) {
|
||||
sched->input_memory_bufs[backend_id] = ggml_backend_alloc_buffer(sched->backends[backend_id], max_input_size);
|
||||
}
|
||||
auto ptr = (char *)ggml_backend_buffer_get_base(sched->input_memory_bufs[backend_id]);
|
||||
input_size = 0;
|
||||
for (int i = 0; i < int(sched->backend_splits[backend_id].size()); ++i) {
|
||||
auto split = sched->backend_splits[backend_id][i];
|
||||
size_t this_size = 0;
|
||||
for (int j = 0; j < split->n_inputs; ++j) {
|
||||
if (!ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
|
||||
this_size += tensor_size(split->inputs[j]);
|
||||
}
|
||||
}
|
||||
if (input_size + this_size > max_input_size) {
|
||||
ptr = (char *)ggml_backend_buffer_get_base(sched->input_memory_bufs[backend_id]);
|
||||
input_size = 0;
|
||||
}
|
||||
for (int j = 0; j < split->n_inputs; ++j) {
|
||||
if (ggml_backend_buffer_is_host(split->inputs[j]->buffer)) continue;
|
||||
auto input_cpy = tensor_copy(split->inputs[j], backend_id, sched->cur_copy);
|
||||
for (int k = 0; k < split->graph.n_nodes; ++k) {
|
||||
auto node = split->graph.nodes[k];
|
||||
for (int l = 0; l < GGML_MAX_SRC; ++l) {
|
||||
if (node->src[l] && node->src[l]->data == input_cpy->data) node->src[l]->data = ptr;
|
||||
}
|
||||
}
|
||||
input_cpy->data = ptr;
|
||||
ptr += tensor_size(split->inputs[j]);
|
||||
}
|
||||
input_size += this_size;
|
||||
}
|
||||
sched->needs_sync[backend_id] = false;
|
||||
sched->own_cpy[backend_id] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
|
||||
|
||||
ggml_backend_sched_split_graph(sched, graph);
|
||||
|
||||
|
||||
if (!ggml_backend_sched_alloc_splits(sched)) {
|
||||
return false;
|
||||
}
|
||||
ggml_sched_prepare_graph(sched);
|
||||
|
||||
sched->is_alloc = true;
|
||||
|
||||
|
||||
Reference in New Issue
Block a user