mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
Implement Adaptive-P Sampler (#1100)
* initial implementation of adaptive-p sampler * explicitly mark candidates unsorted + cleanup qualifiers * cosmetic update * reorg prototypes * lockstep with mainline * add _impl for _init + reorg * add LLAMA_API to prototypes * update sharpness to 10 * lockstep: rng seed * delete llama_sampling member in llama_sampler_adaptive_p * fix LLAMA_API return type * lockstep: rng seed cont * actually correct implementation * lockstep: sorting behavior * const -> constexpr for known constants * add missing space * fix softmax usage in adaptive p sampler * cosmetic changes * implement do-not-sort version of softmax * simpify rng seed, add static to constexpr * refactor: remove iface + use shared rng + use actually original probabilities * adaptive-p: add dedicated rng back in * fix initial max_logit + add float vector to adaptive p sampler context + stochastic sampling * adaptive-p: fuse first softmax with transformation * adaptive-p: implement binary search selection * adaptive-p: update comment
This commit is contained in:
@@ -925,6 +925,16 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
|||||||
}
|
}
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
if (arg == "--adaptive-target") {
|
||||||
|
CHECK_ARG
|
||||||
|
sparams.adaptive_target = std::stof(argv[i]);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
if (arg == "--adaptive-decay") {
|
||||||
|
CHECK_ARG
|
||||||
|
sparams.adaptive_decay = std::stof(argv[i]);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
if (arg == "--spec-replace") {
|
if (arg == "--spec-replace") {
|
||||||
CHECK_ARG
|
CHECK_ARG
|
||||||
std::string target = argv[i];
|
std::string target = argv[i];
|
||||||
@@ -2201,6 +2211,8 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||||||
options.push_back({ "*", " --xtc-probability p", "xtc probability (default: %.1f, 0.0 = disabled)", (double)sparams.xtc_probability });
|
options.push_back({ "*", " --xtc-probability p", "xtc probability (default: %.1f, 0.0 = disabled)", (double)sparams.xtc_probability });
|
||||||
options.push_back({ "*", " --xtc-threshold t", "xtc threshold (default: %.1f, >0.5 = disabled)", (double)sparams.xtc_threshold});
|
options.push_back({ "*", " --xtc-threshold t", "xtc threshold (default: %.1f, >0.5 = disabled)", (double)sparams.xtc_threshold});
|
||||||
options.push_back({ "*", " --top-n-sigma t", "top-n-sigma parmeter (default: %.1f, 0.0 = disabled)", (double)sparams.top_n_sigma});
|
options.push_back({ "*", " --top-n-sigma t", "top-n-sigma parmeter (default: %.1f, 0.0 = disabled)", (double)sparams.top_n_sigma});
|
||||||
|
options.push_back({ "*", " --adaptive-target", "adaptive-p sampling: (default: %.2f, <0.0 = disabled)", (double)sparams.adaptive_target});
|
||||||
|
options.push_back({ "*", " --adaptive-decay", "adaptive-p sampling: (default: %.2f)", (double)sparams.adaptive_decay});
|
||||||
options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n"
|
options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n"
|
||||||
"i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
|
"i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
|
||||||
"or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" });
|
"or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" });
|
||||||
@@ -4174,6 +4186,8 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
|
|||||||
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
|
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
|
||||||
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
|
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
|
||||||
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
|
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
|
||||||
|
fprintf(stream, "adaptive_target: %f # default: -1.0\n", sparams.adaptive_target);
|
||||||
|
fprintf(stream, "adaptive_decay: %f # default: 0.9\n", sparams.adaptive_decay);
|
||||||
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
|
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
|
||||||
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
|
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -99,7 +99,7 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_vocab* vo
|
|||||||
result->n_valid = 0;
|
result->n_valid = 0;
|
||||||
}
|
}
|
||||||
result->grammar = grmr;
|
result->grammar = grmr;
|
||||||
// init DRY
|
llama_sampling_set_rng_seed(result, params.seed);
|
||||||
for (const auto& cnstr : params.samplers_sequence)
|
for (const auto& cnstr : params.samplers_sequence)
|
||||||
{
|
{
|
||||||
switch (cnstr)
|
switch (cnstr)
|
||||||
@@ -116,11 +116,16 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_vocab* vo
|
|||||||
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
case llama_sampler_type::ADAPTIVE_P:
|
||||||
|
{
|
||||||
|
result->adapt_p_ctx=llama_sampler_init_adaptive_p(params.adaptive_target, params.adaptive_decay, result->rng());
|
||||||
|
break;
|
||||||
|
}
|
||||||
default:
|
default:
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
llama_sampling_set_rng_seed(result, params.seed);
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -247,11 +252,13 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
|
|||||||
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||||
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
|
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||||
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f\n"
|
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f\n"
|
||||||
"\txtc_probability = %.3f, xtc_threshold = %.3f, top_n_sigma = %.3f",
|
"\txtc_probability = %.3f, xtc_threshold = %.3f, top_n_sigma = %.3f\n"
|
||||||
|
"\tadaptive_target = %.2f, adaptive_decay = %.2f",
|
||||||
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
|
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
|
||||||
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
|
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
|
||||||
params.mirostat, params.mirostat_eta, params.mirostat_tau,
|
params.mirostat, params.mirostat_eta, params.mirostat_tau,
|
||||||
params.xtc_probability, params.xtc_threshold, params.top_n_sigma);
|
params.xtc_probability, params.xtc_threshold, params.top_n_sigma,
|
||||||
|
params.adaptive_target, params.adaptive_decay);
|
||||||
|
|
||||||
return std::string(result);
|
return std::string(result);
|
||||||
}
|
}
|
||||||
@@ -283,6 +290,7 @@ std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
|
|||||||
case llama_sampler_type::TEMPERATURE: return "temperature";
|
case llama_sampler_type::TEMPERATURE: return "temperature";
|
||||||
case llama_sampler_type::XTC : return "xtc";
|
case llama_sampler_type::XTC : return "xtc";
|
||||||
case llama_sampler_type::TOP_N_SIGMA: return "top_n_sigma";
|
case llama_sampler_type::TOP_N_SIGMA: return "top_n_sigma";
|
||||||
|
case llama_sampler_type::ADAPTIVE_P : return "adaptive_p";
|
||||||
default : return "";
|
default : return "";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -297,7 +305,8 @@ std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vecto
|
|||||||
{"tfs_z", llama_sampler_type::TFS_Z},
|
{"tfs_z", llama_sampler_type::TFS_Z},
|
||||||
{"xtc", llama_sampler_type::XTC},
|
{"xtc", llama_sampler_type::XTC},
|
||||||
{"top_n_sigma", llama_sampler_type::TOP_N_SIGMA},
|
{"top_n_sigma", llama_sampler_type::TOP_N_SIGMA},
|
||||||
{"temperature", llama_sampler_type::TEMPERATURE}
|
{"temperature", llama_sampler_type::TEMPERATURE},
|
||||||
|
{"adaptive_p", llama_sampler_type::ADAPTIVE_P},
|
||||||
};
|
};
|
||||||
|
|
||||||
// since samplers names are written multiple ways
|
// since samplers names are written multiple ways
|
||||||
@@ -314,7 +323,8 @@ std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vecto
|
|||||||
{"tfs", llama_sampler_type::TFS_Z},
|
{"tfs", llama_sampler_type::TFS_Z},
|
||||||
{"xtc", llama_sampler_type::XTC},
|
{"xtc", llama_sampler_type::XTC},
|
||||||
{"top-n-sigma", llama_sampler_type::TOP_N_SIGMA},
|
{"top-n-sigma", llama_sampler_type::TOP_N_SIGMA},
|
||||||
{"temp", llama_sampler_type::TEMPERATURE}
|
{"temp", llama_sampler_type::TEMPERATURE},
|
||||||
|
{"adaptive-p", llama_sampler_type::ADAPTIVE_P},
|
||||||
};
|
};
|
||||||
|
|
||||||
std::vector<llama_sampler_type> sampler_types;
|
std::vector<llama_sampler_type> sampler_types;
|
||||||
@@ -351,7 +361,8 @@ std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::strin
|
|||||||
{'f', llama_sampler_type::TFS_Z},
|
{'f', llama_sampler_type::TFS_Z},
|
||||||
{'x', llama_sampler_type::XTC},
|
{'x', llama_sampler_type::XTC},
|
||||||
{'n', llama_sampler_type::TOP_N_SIGMA},
|
{'n', llama_sampler_type::TOP_N_SIGMA},
|
||||||
{'t', llama_sampler_type::TEMPERATURE}
|
{'t', llama_sampler_type::TEMPERATURE},
|
||||||
|
{'w', llama_sampler_type::ADAPTIVE_P},
|
||||||
};
|
};
|
||||||
|
|
||||||
std::vector<llama_sampler_type> sampler_types;
|
std::vector<llama_sampler_type> sampler_types;
|
||||||
@@ -405,6 +416,7 @@ static void sampler_queue(
|
|||||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
case llama_sampler_type::ADAPTIVE_P: llama_sample_adaptive_p(ctx_main, ctx_sampling->adapt_p_ctx, &cur_p); break;
|
||||||
default : break;
|
default : break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -422,6 +434,7 @@ static llama_token llama_sampling_sample_impl(
|
|||||||
const int mirostat = params.mirostat;
|
const int mirostat = params.mirostat;
|
||||||
const float mirostat_tau = params.mirostat_tau;
|
const float mirostat_tau = params.mirostat_tau;
|
||||||
const float mirostat_eta = params.mirostat_eta;
|
const float mirostat_eta = params.mirostat_eta;
|
||||||
|
const float adaptive_target = params.adaptive_target;
|
||||||
|
|
||||||
std::vector<float> original_logits;
|
std::vector<float> original_logits;
|
||||||
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
|
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
|
||||||
@@ -451,6 +464,17 @@ static llama_token llama_sampling_sample_impl(
|
|||||||
} else if (mirostat == 2) {
|
} else if (mirostat == 2) {
|
||||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||||
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
||||||
|
} else if (adaptive_target >= 0.0f) {
|
||||||
|
// adaptive p sampling
|
||||||
|
static thread_local std::vector<float> orig_probs;
|
||||||
|
orig_probs.resize(cur_p.size);
|
||||||
|
|
||||||
|
// store original probabilities
|
||||||
|
for (size_t ii = 0; ii < cur_p.size; ++ii) {
|
||||||
|
orig_probs[ii] = cur_p.data[ii].p;
|
||||||
|
}
|
||||||
|
sampler_queue(ctx_main, params, ctx_sampling, cur_p, std::max(1, params.min_keep));
|
||||||
|
id = llama_sample_token_adaptive_p(ctx_main, &cur_p, ctx_sampling->adapt_p_ctx, orig_probs.data());
|
||||||
} else {
|
} else {
|
||||||
// temperature sampling
|
// temperature sampling
|
||||||
size_t min_keep = std::max(1, params.min_keep);
|
size_t min_keep = std::max(1, params.min_keep);
|
||||||
|
|||||||
@@ -18,7 +18,8 @@ enum class llama_sampler_type : char {
|
|||||||
XTC = 'x',
|
XTC = 'x',
|
||||||
TOP_N_SIGMA = 'n',
|
TOP_N_SIGMA = 'n',
|
||||||
TYPICAL_P = 'y',
|
TYPICAL_P = 'y',
|
||||||
TEMPERATURE = 't'
|
TEMPERATURE = 't',
|
||||||
|
ADAPTIVE_P = 'w',
|
||||||
};
|
};
|
||||||
|
|
||||||
enum common_grammar_trigger_type {
|
enum common_grammar_trigger_type {
|
||||||
@@ -66,6 +67,8 @@ typedef struct llama_sampling_params {
|
|||||||
float xtc_probability = 0.0f; // xtc probability
|
float xtc_probability = 0.0f; // xtc probability
|
||||||
float xtc_threshold = 1.0f; // xtc threshold, disabled if > 0.5
|
float xtc_threshold = 1.0f; // xtc threshold, disabled if > 0.5
|
||||||
float top_n_sigma = 0.0f; // top-n-sigma
|
float top_n_sigma = 0.0f; // top-n-sigma
|
||||||
|
float adaptive_target = -1.0f; // select tokens near this probability (valid range 0.0 to 1.0; <0 = disabled)
|
||||||
|
float adaptive_decay = 0.90f; // decay rate for target adaptation over time. lower values -> faster but less stable adaptation. (valid range 0.0 to 1.0; ≤0 = no adaptation)
|
||||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
|
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
|
||||||
|
|
||||||
@@ -80,7 +83,8 @@ typedef struct llama_sampling_params {
|
|||||||
llama_sampler_type::MIN_P,
|
llama_sampler_type::MIN_P,
|
||||||
llama_sampler_type::XTC,
|
llama_sampler_type::XTC,
|
||||||
llama_sampler_type::TOP_N_SIGMA,
|
llama_sampler_type::TOP_N_SIGMA,
|
||||||
llama_sampler_type::TEMPERATURE
|
llama_sampler_type::TEMPERATURE,
|
||||||
|
llama_sampler_type::ADAPTIVE_P,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
@@ -118,6 +122,8 @@ struct llama_sampling_context {
|
|||||||
std::vector<llama_token_data> cur;
|
std::vector<llama_token_data> cur;
|
||||||
llama_sampler_dry* smpl;
|
llama_sampler_dry* smpl;
|
||||||
|
|
||||||
|
llama_sampler_adaptive_p * adapt_p_ctx; // adaptive p sampler
|
||||||
|
|
||||||
size_t n_valid; // Number of correct top tokens with correct probabilities.
|
size_t n_valid; // Number of correct top tokens with correct probabilities.
|
||||||
|
|
||||||
llama_token_data_array cur_p; // current candidates
|
llama_token_data_array cur_p; // current candidates
|
||||||
|
|||||||
@@ -807,6 +807,8 @@ bool server_context::launch_slot_with_task(server_slot& slot, server_task& task)
|
|||||||
slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
|
slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
|
||||||
slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
|
slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
|
||||||
slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
||||||
|
slot.sparams.adaptive_target = json_value(data, "adaptive_target", default_sparams.adaptive_target);
|
||||||
|
slot.sparams.adaptive_decay = json_value(data, "adaptive_decay", default_sparams.adaptive_decay);
|
||||||
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
||||||
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
|
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
|
||||||
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
|
slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
|
||||||
@@ -1405,6 +1407,8 @@ json server_context::get_formated_generation(const server_slot& slot) const {
|
|||||||
{"mirostat", slot.sparams.mirostat},
|
{"mirostat", slot.sparams.mirostat},
|
||||||
{"mirostat_tau", slot.sparams.mirostat_tau},
|
{"mirostat_tau", slot.sparams.mirostat_tau},
|
||||||
{"mirostat_eta", slot.sparams.mirostat_eta},
|
{"mirostat_eta", slot.sparams.mirostat_eta},
|
||||||
|
{"adaptive_target", slot.sparams.adaptive_target},
|
||||||
|
{"adaptive_decay", slot.sparams.adaptive_decay},
|
||||||
{"penalize_nl", slot.sparams.penalize_nl},
|
{"penalize_nl", slot.sparams.penalize_nl},
|
||||||
{"stop", slot.params.antiprompt},
|
{"stop", slot.params.antiprompt},
|
||||||
{"max_tokens", slot.params.n_predict}, // User configured n_predict
|
{"max_tokens", slot.params.n_predict}, // User configured n_predict
|
||||||
|
|||||||
@@ -1380,6 +1380,21 @@ LLAMA_API struct llama_grammar* llama_sampler_init_grammar_lazy_patterns(
|
|||||||
/// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
|
/// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
|
||||||
|
|
||||||
|
|
||||||
|
/// @details Adaptive p sampler initializer
|
||||||
|
/// @param target Select tokens near this probability (valid range 0.0 to 1.0; <0 = disabled)
|
||||||
|
/// @param decay Decay rate for target adaptation over time. lower values -> faster but less stable adaptation. (valid range 0.0 to 1.0; ≤0 = no adaptation)
|
||||||
|
LLAMA_API struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p(
|
||||||
|
const float target,
|
||||||
|
const float decay,
|
||||||
|
const uint32_t seed);
|
||||||
|
|
||||||
|
/// @details Adaptive p sampler described in https://github.com/MrJackSpade/adaptive-p-docs/blob/main/README.md
|
||||||
|
void llama_sample_adaptive_p(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
struct llama_sampler_adaptive_p * adapt_p_ctx,
|
||||||
|
llama_token_data_array * candidates);
|
||||||
|
|
||||||
|
|
||||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||||
@@ -1417,6 +1432,13 @@ LLAMA_API struct llama_grammar* llama_sampler_init_grammar_lazy_patterns(
|
|||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_token_data_array * candidates);
|
llama_token_data_array * candidates);
|
||||||
|
|
||||||
|
/// @details Randonly selects a token from the candidates following adaptive p sampler.
|
||||||
|
llama_token llama_sample_token_adaptive_p(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
llama_token_data_array * candidates,
|
||||||
|
struct llama_sampler_adaptive_p * adapt_p_ctx,
|
||||||
|
float * orig_probs);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Model split
|
// Model split
|
||||||
//
|
//
|
||||||
|
|||||||
@@ -1033,6 +1033,111 @@ struct llama_sampler_dry* llama_sampler_init_dry_impl(const struct llama_vocab&
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// adaptive p
|
||||||
|
|
||||||
|
llama_token llama_sample_token_adaptive_p_impl(
|
||||||
|
struct llama_sampling * smpl,
|
||||||
|
llama_token_data_array * candidates,
|
||||||
|
struct llama_sampler_adaptive_p * adapt_p_ctx,
|
||||||
|
float * orig_probs)
|
||||||
|
{
|
||||||
|
GGML_ASSERT(candidates->size > 0);
|
||||||
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
|
const size_t count = candidates->size;
|
||||||
|
adapt_p_ctx->probs.resize(count);
|
||||||
|
|
||||||
|
// cumulative distribution
|
||||||
|
const float max_logit = adapt_p_ctx->max_logit;
|
||||||
|
float cum_prob = 0.0f;
|
||||||
|
for (size_t i = 0; i < count; ++i) {
|
||||||
|
cum_prob += expf(candidates->data[i].logit - max_logit);
|
||||||
|
adapt_p_ctx->probs[i] = cum_prob;
|
||||||
|
}
|
||||||
|
adapt_p_ctx->probs.back() += 1.0f; // safety margin in case rng() ~= rng.max()
|
||||||
|
|
||||||
|
// find token with cum_prob > target_cum_prob
|
||||||
|
const float target_cum_prob = cum_prob * (float)adapt_p_ctx->rng() / (float)adapt_p_ctx->rng.max();
|
||||||
|
auto iter = std::upper_bound(adapt_p_ctx->probs.begin(), adapt_p_ctx->probs.end(), target_cum_prob);
|
||||||
|
GGML_ASSERT(iter != adapt_p_ctx->probs.end());
|
||||||
|
llama_token id = candidates->data[std::distance(adapt_p_ctx->probs.begin(), iter)].id;
|
||||||
|
|
||||||
|
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||||
|
smpl->n_sample++;
|
||||||
|
|
||||||
|
// update history with original probability of selected token
|
||||||
|
adapt_p_ctx->weighted_sum = adapt_p_ctx->decay * adapt_p_ctx->weighted_sum + orig_probs[id];
|
||||||
|
adapt_p_ctx->total_weight = adapt_p_ctx->decay * adapt_p_ctx->total_weight + 1.0f;
|
||||||
|
|
||||||
|
return id;
|
||||||
|
}
|
||||||
|
|
||||||
|
void llama_sampler_adaptive_p_apply(struct llama_sampler_adaptive_p * adapt_p_ctx, llama_token_data_array * candidates)
|
||||||
|
{
|
||||||
|
if (adapt_p_ctx->target < 0.0f) {
|
||||||
|
// sampler is disabled
|
||||||
|
llama_sample_softmax_impl(nullptr, candidates);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// incomplete softmax because final division can be fused
|
||||||
|
float max_l = candidates->data[0].logit;
|
||||||
|
for (size_t i = 1; i < candidates->size; ++i) {
|
||||||
|
max_l = std::max(max_l, candidates->data[i].logit);
|
||||||
|
}
|
||||||
|
float cum_sum = 0.0f;
|
||||||
|
for (size_t i = 0; i < candidates->size; ++i) {
|
||||||
|
const float p = expf(candidates->data[i].logit - max_l);
|
||||||
|
candidates->data[i].p = p;
|
||||||
|
cum_sum += p;
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute adapted target probability
|
||||||
|
const float target = std::clamp(adapt_p_ctx->target, 0.0f, 1.0f);
|
||||||
|
const float adapted_target = std::clamp(adapt_p_ctx->total_weight == 0.0f
|
||||||
|
? target
|
||||||
|
: 2.0f * target - (adapt_p_ctx->weighted_sum / adapt_p_ctx->total_weight),
|
||||||
|
0.0f, 1.0f);
|
||||||
|
|
||||||
|
// transformation constants
|
||||||
|
static constexpr float peak_logit_value = 5.0f;
|
||||||
|
static constexpr float inv_width = 1.0f / 0.3f;
|
||||||
|
static constexpr float sharpness = 10.0f;
|
||||||
|
|
||||||
|
const float fused_target = adapted_target * inv_width;
|
||||||
|
const float fused_width = inv_width / cum_sum;
|
||||||
|
|
||||||
|
// quadratic near target for finite differentiation, transitioning to linear decay in tails
|
||||||
|
// unbounded negative logits suppress far-from-target tokens after softmax
|
||||||
|
float max_logit = -INFINITY;
|
||||||
|
for (size_t i = 0; i < candidates->size; ++i) {
|
||||||
|
const float dist = std::abs(candidates->data[i].p * fused_width - fused_target);
|
||||||
|
const float logit = peak_logit_value - sharpness * dist * dist / (1.0f + dist);
|
||||||
|
candidates->data[i].logit = logit;
|
||||||
|
max_logit = std::max(max_logit, logit);
|
||||||
|
}
|
||||||
|
candidates->sorted = false;
|
||||||
|
adapt_p_ctx->max_logit = max_logit;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p_impl(
|
||||||
|
const float target,
|
||||||
|
const float decay,
|
||||||
|
const uint32_t seed)
|
||||||
|
{
|
||||||
|
const float clamped_decay = std::clamp(decay, 0.0f, 0.99f);
|
||||||
|
return new llama_sampler_adaptive_p {
|
||||||
|
/* .target = */ target,
|
||||||
|
/* .decay = */ clamped_decay,
|
||||||
|
/* .rng = */ std::mt19937(seed),
|
||||||
|
/* .weighted_sum = */ target / (1.0f - clamped_decay),
|
||||||
|
/* .total_weight = */ 1.0f / (1.0f - clamped_decay),
|
||||||
|
/* .max_logit = */ 0.0f,
|
||||||
|
/* .probs = */ {},
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// grammar
|
// grammar
|
||||||
|
|
||||||
struct llama_sampler_grammar {
|
struct llama_sampler_grammar {
|
||||||
|
|||||||
@@ -61,6 +61,24 @@ struct llama_sampler_dry * llama_sampler_init_dry_impl(
|
|||||||
|
|
||||||
void llama_sampler_dry_apply(struct llama_sampler_dry* smpl, llama_token_data_array* cur_p);
|
void llama_sampler_dry_apply(struct llama_sampler_dry* smpl, llama_token_data_array* cur_p);
|
||||||
|
|
||||||
|
// maintains an exponential moving average of the *ORIGINAL* probabilities of selected tokens
|
||||||
|
// used to compute an adapted target at each sampling step.
|
||||||
|
// see llama.h for a full description of the sampler
|
||||||
|
struct llama_sampler_adaptive_p {
|
||||||
|
const float target; // target probability (0.0 - 1.0; negative = disabled)
|
||||||
|
const float decay; // EMA decay; history ≈ 1/(1-decay) tokens (0.0 - 0.99)
|
||||||
|
std::mt19937 rng; // RNG
|
||||||
|
float weighted_sum; // sum(p_n * decay^N)
|
||||||
|
float total_weight; // sum(decay^i), converges to 1/(1-decay)
|
||||||
|
float max_logit; // maximum logit found during transform
|
||||||
|
std::vector<float> probs; // cumulative probabilities
|
||||||
|
};
|
||||||
|
|
||||||
|
void llama_sampler_adaptive_p_apply(
|
||||||
|
struct llama_sampler_adaptive_p * adapt_p_ctx,
|
||||||
|
llama_token_data_array * candidates);
|
||||||
|
|
||||||
|
struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p_impl(const float target, const float decay, const uint32_t seed);
|
||||||
|
|
||||||
|
|
||||||
void llama_sample_repetition_penalties_impl(
|
void llama_sample_repetition_penalties_impl(
|
||||||
@@ -83,6 +101,6 @@ llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, ll
|
|||||||
llama_token llama_sample_token_greedy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
|
llama_token llama_sample_token_greedy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
|
||||||
llama_token llama_sample_token_with_rng_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng);
|
llama_token llama_sample_token_with_rng_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng);
|
||||||
llama_token llama_sample_token_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
|
llama_token llama_sample_token_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
|
||||||
|
llama_token llama_sample_token_adaptive_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx, float * orig_probs);
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -7581,6 +7581,13 @@ void llama_sample_dry([[maybe_unused]] struct llama_context* ctx, struct llama_s
|
|||||||
llama_sampler_dry_apply(smpl, candidates_p);
|
llama_sampler_dry_apply(smpl, candidates_p);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void llama_sample_adaptive_p(
|
||||||
|
[[maybe_unused]] struct llama_context * ctx,
|
||||||
|
struct llama_sampler_adaptive_p * adapt_p_ctx,
|
||||||
|
llama_token_data_array * candidates) {
|
||||||
|
llama_sampler_adaptive_p_apply(adapt_p_ctx, candidates);
|
||||||
|
}
|
||||||
|
|
||||||
void llama_sample_repetition_penalties(
|
void llama_sample_repetition_penalties(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_token_data_array * candidates,
|
llama_token_data_array * candidates,
|
||||||
@@ -7620,6 +7627,15 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra
|
|||||||
return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, ctx->sampling.rng);
|
return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, ctx->sampling.rng);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
llama_token llama_sample_token_adaptive_p(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
llama_token_data_array * candidates,
|
||||||
|
struct llama_sampler_adaptive_p * adapt_p_ctx,
|
||||||
|
float * orig_probs)
|
||||||
|
{
|
||||||
|
return llama_sample_token_adaptive_p_impl(&ctx->sampling, candidates, adapt_p_ctx, orig_probs);
|
||||||
|
}
|
||||||
|
|
||||||
int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
|
int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
|
||||||
static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
|
static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
|
||||||
if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
|
if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
|
||||||
@@ -7671,6 +7687,13 @@ void llama_sampler_dry_accept(struct llama_sampler_dry* smpl, llama_token token)
|
|||||||
smpl->last_tokens.push_back(token);
|
smpl->last_tokens.push_back(token);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct llama_sampler_adaptive_p * llama_sampler_init_adaptive_p(const float target, const float decay, const uint32_t seed)
|
||||||
|
{
|
||||||
|
return llama_sampler_init_adaptive_p_impl(target, decay, seed);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
|
int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
|
||||||
std::string str_split_path(split_path);
|
std::string str_split_path(split_path);
|
||||||
char postfix[32];
|
char postfix[32];
|
||||||
|
|||||||
Reference in New Issue
Block a user