Better PP performance with split mode "graph" and 3+ GPUs (#1069)

* This should do the trick for PP

* Command line option to set max. extra VRAM that the scheduler can use

* Fix bug and cleanup

* Looks like with this change it is working with tensor overrides

* Nah, it is not working

* OK, this seems to be working

* Disable split scheduling with tensor overrides

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2025-12-17 07:40:25 +01:00
committed by GitHub
parent 75de0528c3
commit 5585ac2aa8
6 changed files with 100 additions and 45 deletions

View File

@@ -757,6 +757,11 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
params.defrag_thold = std::stof(argv[i]); params.defrag_thold = std::stof(argv[i]);
return true; return true;
} }
if (arg == "--max-extra-alloc" || arg == "-mea") {
CHECK_ARG
params.max_extra_alloc_MiB = std::stoi(argv[i]);
return true;
}
if (arg == "--samplers") { if (arg == "--samplers") {
CHECK_ARG CHECK_ARG
const auto sampler_names = string_split(argv[i], ";"); const auto sampler_names = string_split(argv[i], ";");
@@ -2218,6 +2223,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
options.push_back({ "parallel" }); options.push_back({ "parallel" });
options.push_back({ "*", "-dt, --defrag-thold N", "KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold }); options.push_back({ "*", "-dt, --defrag-thold N", "KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold });
options.push_back({ "*", "-mea, --max-extra-alloc", "Max extra VRAM allocation per GPU (default: %d)", params.max_extra_alloc_MiB});
options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel }); options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel });
options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences }); options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences });
options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" }); options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" });
@@ -3109,7 +3115,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.min_experts = params.min_experts; cparams.min_experts = params.min_experts;
cparams.thresh_experts = params.thresh_experts; cparams.thresh_experts = params.thresh_experts;
cparams.only_active_experts = params.only_active_exps; cparams.only_active_experts = params.only_active_exps;
cparams.k_cache_hadamard = params.k_cache_hadamard; cparams.max_extra_alloc = params.max_extra_alloc_MiB;
cparams.type_k = kv_cache_type_from_str(params.cache_type_k); cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v); cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
@@ -4049,6 +4055,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "use_thp: %s # default: false\n", params.use_thp ? "true" : "false"); fprintf(stream, "use_thp: %s # default: false\n", params.use_thp ? "true" : "false");
fprintf(stream, "validate_quants: %s # default: false\n", params.validate_quants ? "true" : "false"); fprintf(stream, "validate_quants: %s # default: false\n", params.validate_quants ? "true" : "false");
fprintf(stream, "merge_qkv: %s # default: false\n", params.merge_qkv ? "true" : "false"); fprintf(stream, "merge_qkv: %s # default: false\n", params.merge_qkv ? "true" : "false");
fprintf(stream, "max_extra_alloc: %d # default: 256\n", params.max_extra_alloc_MiB);
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false"); fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);

View File

@@ -167,6 +167,7 @@ struct gpt_params {
float yarn_beta_slow = -1.0f; // YaRN high correction dim float yarn_beta_slow = -1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold float defrag_thold = -1.0f; // KV cache defragmentation threshold
int32_t max_extra_alloc_MiB = 256; // additional VRAM per GPU the scheduler may allocate for more efficient compute graph evaluation
ggml_backend_sched_eval_callback cb_eval = nullptr; ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr; void * cb_eval_user_data = nullptr;

View File

@@ -212,6 +212,7 @@ extern "C" {
GGML_API void ggml_backend_sched_set_op_offload(ggml_backend_sched_t sched, enum ggml_op op, bool on_or_off); GGML_API void ggml_backend_sched_set_op_offload(ggml_backend_sched_t sched, enum ggml_op op, bool on_or_off);
GGML_API void ggml_backend_sched_set_only_active_experts(ggml_backend_sched_t sched, bool on_or_off); GGML_API void ggml_backend_sched_set_only_active_experts(ggml_backend_sched_t sched, bool on_or_off);
GGML_API void ggml_backend_sched_set_split_mode_graph(ggml_backend_sched_t sched, bool on_or_off); GGML_API void ggml_backend_sched_set_split_mode_graph(ggml_backend_sched_t sched, bool on_or_off);
GGML_API void ggml_backend_sched_set_max_extra_alloc(ggml_backend_sched_t sched, int extra_alloc_MiB);
// //
// Utils // Utils

View File

@@ -13,13 +13,12 @@
#include <vector> #include <vector>
#include <set> #include <set>
#include <array> #include <array>
#include <chrono>
#define IK_PRINT_TIMING 0 #define IK_PRINT_TIMING 0
#define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b))
constexpr size_t k_max_extra_alloc = 1024*1024*64;
// backend buffer type // backend buffer type
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
@@ -1149,6 +1148,8 @@ struct ggml_backend_sched {
int n_splits; int n_splits;
int splits_capacity; int splits_capacity;
size_t max_extra_alloc = 0;
// pipeline parallelism support // pipeline parallelism support
int n_copies; int n_copies;
int cur_copy; int cur_copy;
@@ -1200,6 +1201,13 @@ void ggml_backend_sched_set_split_mode_graph(ggml_backend_sched_t sched, bool on
sched->split_mode_graph = on_or_off; sched->split_mode_graph = on_or_off;
} }
void ggml_backend_sched_set_max_extra_alloc(ggml_backend_sched_t sched, int extra_alloc_MiB) {
if (!sched) return;
if (extra_alloc_MiB >= 0) {
sched->max_extra_alloc = size_t(extra_alloc_MiB)*1024*1024;
}
}
static inline bool ggml_backend_sched_offload_enabled(ggml_backend_sched_t sched, enum ggml_op op) { static inline bool ggml_backend_sched_offload_enabled(ggml_backend_sched_t sched, enum ggml_op op) {
int int_op = (int)op; int int_op = (int)op;
if (!sched || op < 0 || op >= GGML_OP_COUNT) return false; if (!sched || op < 0 || op >= GGML_OP_COUNT) return false;
@@ -2004,11 +2012,7 @@ static void ggml_backend_sched_copy_inputs(ggml_backend_sched_t sched, ggml_back
// try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
// TODO: add public function to facilitate this, since applications do not have direct access to the backend interface // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) { if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
int input_backend_id = tensor_backend_id(input); ggml_backend_synchronize(input_backend);
if (needs_sync[input_backend_id]) {
ggml_backend_synchronize(input_backend);
needs_sync[input_backend_id] = k_set_sync;
}
if (needs_sync[split_backend_id]) { if (needs_sync[split_backend_id]) {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) { if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]); ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
@@ -2101,50 +2105,83 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
std::array<bool, GGML_SCHED_MAX_BACKENDS> own_cpy{{false}}; std::array<bool, GGML_SCHED_MAX_BACKENDS> own_cpy{{false}};
if (sched->split_mode_graph) { if (sched->split_mode_graph) {
std::vector<size_t> input_size(sched->n_backends, 0); auto tensor_size = [] (const ggml_tensor * t) {
auto nbytes = ggml_nbytes(t);
nbytes = 256*((nbytes + 255)/256);
return nbytes;
};
//auto tim1 = std::chrono::steady_clock::now();
std::vector<std::vector<ggml_backend_sched_split*>> backend_splits(sched->n_backends);
for (int i = 0; i < sched->n_splits; i++) { for (int i = 0; i < sched->n_splits; i++) {
auto split = &sched->splits[i]; backend_splits[sched->splits[i].backend_id].push_back(&sched->splits[i]);
int split_backend_id = split->backend_id;
for (int j = 0; j < split->n_inputs; ++j) {
auto nbytes = ggml_nbytes(split->inputs[j]);
nbytes = 256*((nbytes + 255)/256);
input_size[split_backend_id] += nbytes;
}
} }
for (int backend_id = 0; backend_id < sched->n_backends; ++backend_id) { for (int backend_id = 0; backend_id < sched->n_backends; ++backend_id) {
if (!input_size[backend_id]) continue; // this backend has no inputs, so no need to worry about it. if (ggml_backend_is_cpu(ggml_backend_sched_get_backend(sched, backend_id))) continue;
if (input_size[backend_id] <= k_max_extra_alloc) { if (backend_splits[backend_id].empty()) continue;
if (sched->input_memory_bufs[backend_id] && sched->input_memory_bufs[backend_id]->size < input_size[backend_id]) { size_t input_size = 0;
ggml_backend_buffer_free(sched->input_memory_bufs[backend_id]); size_t max_input_size = 0;
sched->input_memory_bufs[backend_id] = nullptr; int last_split = 0;
} bool can_alloc = true;
if (!sched->input_memory_bufs[backend_id]) { for (int i = 0; i < int(backend_splits[backend_id].size()); ++i) {
sched->input_memory_bufs[backend_id] = ggml_backend_alloc_buffer(sched->backends[backend_id], input_size[backend_id]); auto split = backend_splits[backend_id][i];
} if (split->n_inputs < 1) continue;
auto ptr = (char *)ggml_backend_buffer_get_base(sched->input_memory_bufs[backend_id]); size_t this_size = 0;
for (int i = 0; i < sched->n_splits; ++i) { for (int j = 0; j < split->n_inputs; ++j) {
auto split = &sched->splits[i]; if (!ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
if (split->backend_id != backend_id) continue; this_size += tensor_size(split->inputs[j]);
for (int j = 0; j < split->n_inputs; ++j) {
auto input_cpy = tensor_copy(split->inputs[j], backend_id, sched->cur_copy);
for (int k = 0; k < split->graph.n_nodes; ++k) {
auto node = split->graph.nodes[k];
for (int l = 0; l < GGML_MAX_SRC; ++l) {
if (node->src[l] && node->src[l]->data == input_cpy->data) node->src[l]->data = ptr;
}
}
input_cpy->data = ptr;
auto nbytes = ggml_nbytes(split->inputs[j]);
nbytes = 256*((nbytes + 255)/256);
ptr += nbytes;
} }
} }
needs_sync[backend_id] = false; if (input_size + this_size > sched->max_extra_alloc) {
own_cpy[backend_id] = true; if (i - last_split < 3) {
can_alloc = false;
break;
}
max_input_size = std::max(max_input_size, input_size);
input_size = 0;
last_split = i - 1;
}
input_size += this_size;
} }
max_input_size = std::max(max_input_size, input_size);
if (!can_alloc || !max_input_size) continue;
if (sched->input_memory_bufs[backend_id] && sched->input_memory_bufs[backend_id]->size < max_input_size) {
ggml_backend_buffer_free(sched->input_memory_bufs[backend_id]);
sched->input_memory_bufs[backend_id] = nullptr;
}
if (!sched->input_memory_bufs[backend_id]) {
sched->input_memory_bufs[backend_id] = ggml_backend_alloc_buffer(sched->backends[backend_id], max_input_size);
}
auto ptr = (char *)ggml_backend_buffer_get_base(sched->input_memory_bufs[backend_id]);
input_size = 0;
for (int i = 0; i < int(backend_splits[backend_id].size()); ++i) {
auto split = backend_splits[backend_id][i];
size_t this_size = 0;
for (int j = 0; j < split->n_inputs; ++j) {
if (!ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
this_size += tensor_size(split->inputs[j]);
}
}
if (input_size + this_size > max_input_size) {
ptr = (char *)ggml_backend_buffer_get_base(sched->input_memory_bufs[backend_id]);
input_size = 0;
}
for (int j = 0; j < split->n_inputs; ++j) {
if (ggml_backend_buffer_is_host(split->inputs[j]->buffer)) continue;
auto input_cpy = tensor_copy(split->inputs[j], backend_id, sched->cur_copy);
for (int k = 0; k < split->graph.n_nodes; ++k) {
auto node = split->graph.nodes[k];
for (int l = 0; l < GGML_MAX_SRC; ++l) {
if (node->src[l] && node->src[l]->data == input_cpy->data) node->src[l]->data = ptr;
}
}
input_cpy->data = ptr;
ptr += tensor_size(split->inputs[j]);
}
input_size += this_size;
}
needs_sync[backend_id] = false;
own_cpy[backend_id] = true;
} }
//printf("=== Input memory per backend:\n");
//for (int i = 0; i < sched->n_backends; ++i) printf(" %d: %.2f MiB\n", i, input_size[i]/1024./1024.);
} }
struct ggml_backend_sched_split * splits = sched->splits; struct ggml_backend_sched_split * splits = sched->splits;
@@ -2166,6 +2203,12 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
if (split->n_inputs > 0 && !own_cpy[split_backend_id]) { if (split->n_inputs > 0 && !own_cpy[split_backend_id]) {
needs_sync[split_backend_id] = true; needs_sync[split_backend_id] = true;
} else {
for (int j = 0; j < split->n_inputs; ++j) {
if (ggml_backend_buffer_is_host(split->inputs[j]->buffer)) {
needs_sync[split_backend_id] = true;
}
}
} }
if (!sched->callback_eval) { if (!sched->callback_eval) {
#if IK_PRINT_TIMING #if IK_PRINT_TIMING

View File

@@ -404,6 +404,7 @@ extern "C" {
uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models) uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
uint32_t n_threads; // number of threads to use for generation uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing uint32_t n_threads_batch; // number of threads to use for batch processing
int32_t max_extra_alloc; // Max. additional VRAM the scheduler is allowed to allocate
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id

View File

@@ -4022,6 +4022,7 @@ struct llama_context_params llama_context_default_params() {
/*.n_seq_max =*/ 1, /*.n_seq_max =*/ 1,
/*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
/*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
/*.max_extra_alloc =*/ 256,
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
/*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED, /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
/*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED, /*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
@@ -4774,6 +4775,7 @@ struct llama_context * llama_new_context_with_model(
} }
if (model->split_mode == LLAMA_SPLIT_MODE_GRAPH && !model->has_tensor_overrides()) { if (model->split_mode == LLAMA_SPLIT_MODE_GRAPH && !model->has_tensor_overrides()) {
ggml_backend_sched_set_split_mode_graph(ctx->sched, true); ggml_backend_sched_set_split_mode_graph(ctx->sched, true);
ggml_backend_sched_set_max_extra_alloc(ctx->sched, params.max_extra_alloc);
} }
return ctx; return ctx;