IQ4_NL_X4 (#118)

* Adding iq4_nl_x4

Looks very promising - I get PP-512(LLaMA-3.1-8B) = 230 t/s
on the Ryzen-7950X! This is faster than any other quant and
~40% faster than iq4_nl.

* iq4_nl_x4: getting amazing

This Zen4 variant gets us to PP-512(LLaMA-3.1-8B) = 263 t/s!

* iq4_nl_x4: AVX2

Here we gain only 25% compared to iq4_nl

* iq4_nl_x4: NEON

On M2-Max we get PP-512(LLaMA-3.1-8B) = 109.7 t/s, up from
82.4 t/s for iq4_nl.

* iq4_nl_x4: minor NEON improvement and cleanup

This gets us to 110.3 t/s. In comparison,
IQ4_NL_4_4 in mainline llama.cpp achieves 92.3 t/s.

* iq4_nl_x4: NEON specialization for matrix x vector

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2024-12-02 07:25:39 +01:00
committed by GitHub
parent 6c73f704ca
commit 72d94fbf22
10 changed files with 398 additions and 13 deletions

View File

@@ -40,6 +40,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
{ "IQ4_NL_X4",LLAMA_FTYPE_MOSTLY_IQ4_NL_X4," 4.50 bpw non-linear quantization", },
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
{ "IQ4_KS", LLAMA_FTYPE_MOSTLY_IQ4_KS, " 4.25 bpw non-linear quantization", },
{ "IQ4_KSS", LLAMA_FTYPE_MOSTLY_IQ4_KSS, " 4.0 bpw non-linear quantization", },