Adding IQ4_KSS: 4.0 bpw quants (#89)

* iq4_kss: WIP

* iq4_kss: CUDA dequantize works

So we can run perplexity. Sadly, the result does not look good
on the bpw vs quantization error plot.

* iq4_kss: slightly better quantization

* iq4_kss: another small quantization improvement

* iq4_kss: CUDA works

TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B.
In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks.
I.e., the reduced model size more than offsets the additional
bit fiddling required for iq4_kss.

* iq4_kss: new bit arrangement - CUDA and Zen4 work

Did not lose performance on CUDA. Zen4 is decent, but not great:
PP-512(LLaMA-3.1-8B) = 163 t/s.
TG-128 is of course better than other 4-bit quants due to smaller model size.
We get 14.5 t/s @ 8 threads.

* iq4_kss: ARM_NEON. Predictably very slow

* iq4_kss: Metal

PP is not too bad - just 10% slower than q4_0.
But TG is 30% slower, i.e., predictably bad.

* iq4_kss: somewhat faster Metal dot product

45.75 t/s -> 48.75 t/s.
Still 22% slower than q4_0

* iq4_kss: AVX2

Bad, but better than I expected.
PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X.
I.e., with 32 AVX2 threads we get the performance of
16 Zen4 threads.

* iq4_kss: very slightly faster Metal dot product

48.7 t/s -> 49.3 t/s

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2024-10-16 15:18:26 +03:00
committed by GitHub
parent 993ca95e9e
commit 76b97c8064
19 changed files with 997 additions and 25 deletions

View File

@@ -256,6 +256,8 @@ static void analyze_iq4ks(const char * name, int nrows, int n_per_row, const flo
float mse0 = 0, mse = 0;
auto compute = [&mutex, &counter, &mse0, &mse, values, row_size, nblock, nrows, n_per_row, chunk] () {
std::vector<char> Q(row_size);
float diff[4];
float xv[4];
float lmse0 = 0, lmse = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
@@ -282,25 +284,41 @@ static void analyze_iq4ks(const char * name, int nrows, int n_per_row, const flo
for (int j = 0; j < 16; j += 2) {
uint16_t v0 = *(const uint16_t *)(qs + j);
int non = popcount(v0);
float diff1 = xb[j+ 0] - dl*values[qs[j+0] & 0xf];
float diff2 = xb[j+16] - dl*values[qs[j+0] >> 4];
float diff3 = xb[j+ 1] - dl*values[qs[j+1] & 0xf];
float diff4 = xb[j+17] - dl*values[qs[j+1] >> 4];
lmse0 += diff1*diff1 + diff2*diff2 + diff3*diff3 + diff4*diff4;
xv[0] = xb[j+ 0]; xv[1] = xb[j+16]; xv[2] = xb[j+ 1]; xv[3] = xb[j+17];
diff[0] = xv[0] - dl*values[qs[j+0] & 0xf];
diff[1] = xv[1] - dl*values[qs[j+0] >> 4];
diff[2] = xv[2] - dl*values[qs[j+1] & 0xf];
diff[3] = xv[3] - dl*values[qs[j+1] >> 4];
float diff4 = diff[0]*diff[0] + diff[1]*diff[1] + diff[2]*diff[2] + diff[3]*diff[3];
lmse0 += diff4;
if (non%2 == 0) {
lmse += diff1*diff1 + diff2*diff2 + diff3*diff3 + diff4*diff4;
lmse += diff4;
} else {
float best = std::numeric_limits<float>::max();
for (int k = 0; k < 16; k += 4) {
uint16_t v = v0 ^ (1 << k);
uint8_t v1 = v;
uint8_t v2 = v >> 8;
diff1 = xb[j+ 0] - dl*values[v1 & 0xf];
diff2 = xb[j+16] - dl*values[v1 >> 4];
diff3 = xb[j+ 1] - dl*values[v2 & 0xf];
diff4 = xb[j+17] - dl*values[v2 >> 4];
float score = diff1*diff1 + diff2*diff2 + diff3*diff3 + diff4*diff4;
if (score < best) best = score;
//for (int k = 0; k < 16; k += 4) {
// uint16_t v = v0 ^ (1 << k);
// uint8_t v1 = v;
// uint8_t v2 = v >> 8;
// diff1 = xb[j+ 0] - dl*values[v1 & 0xf];
// diff2 = xb[j+16] - dl*values[v1 >> 4];
// diff3 = xb[j+ 1] - dl*values[v2 & 0xf];
// diff4 = xb[j+17] - dl*values[v2 >> 4];
// float score = diff1*diff1 + diff2*diff2 + diff3*diff3 + diff4*diff4;
// if (score < best) best = score;
//}
for (int k = 0; k < 4; ++k) {
uint16_t v = (v0 >> 4*k) & 0xf;
auto pc = popcount(v);
if (v > 0 && popcount(v-1u) != pc) {
float this_diff = xv[k] - dl*values[v-1u];
float score = diff4 - diff[k]*diff[k] + this_diff*this_diff;
if (score < best) best = score;
}
if (v < 15 && popcount(v + 1u) != pc) {
float this_diff = xv[k] - dl*values[v+1u];
float score = diff4 - diff[k]*diff[k] + this_diff*this_diff;
if (score < best) best = score;
}
}
lmse += best;
}