mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
Add vision support in llama-server (#901)
* server: add support for vision model webui: add support for vision model * server : remove hack for extra parallel slot#10187 * llama : fix KV shift for qwen2vl #13870 * add no-context-shift parameter --------- Co-authored-by: firecoperana <firecoperana>
This commit is contained in:
@@ -57,8 +57,6 @@ add_library(${TARGET} STATIC
|
||||
chat-parser.cpp
|
||||
chat-parser.h
|
||||
common.cpp
|
||||
chat.h
|
||||
chat.cpp
|
||||
sampling.h
|
||||
sampling.cpp
|
||||
console.h
|
||||
|
||||
@@ -270,6 +270,14 @@ static std::string parse_device_list(const std::string& value) {
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
std::pair<long, std::vector<char>> common_remote_get_content(const std::string& url, const common_remote_params&) {
|
||||
if (!url.empty()) {
|
||||
throw std::runtime_error("error: built without CURL, cannot download file from the internet");
|
||||
}
|
||||
return {};
|
||||
}
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
@@ -1727,6 +1735,11 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
params.n_junk = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--no-context-shift") {
|
||||
CHECK_ARG
|
||||
params.ctx_shift = false;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--pos") {
|
||||
CHECK_ARG
|
||||
params.i_pos = std::stoi(argv[i]);
|
||||
@@ -2060,7 +2073,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "multi-modality" });
|
||||
options.push_back({ "*", " --mmproj FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md" });
|
||||
options.push_back({ "*", " --image FILE", "path to an image file. use with multimodal models. Specify multiple times for batching" });
|
||||
|
||||
options.push_back({ "*", " --no-context-shift", "disable context-shift." });
|
||||
options.push_back({ "backend" });
|
||||
options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" });
|
||||
|
||||
@@ -3311,6 +3324,29 @@ std::vector<llama_token> llama_tokenize(
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_vocab* vocab,
|
||||
const std::string& text,
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
// upper limit for the number of tokens
|
||||
int n_tokens = text.length() + 2 * add_special;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_vocab_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
if (n_tokens == std::numeric_limits<int32_t>::min()) {
|
||||
throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
|
||||
}
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_vocab_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
}
|
||||
else {
|
||||
result.resize(n_tokens);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
std::string piece;
|
||||
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
|
||||
@@ -3343,7 +3379,7 @@ std::string llama_token_to_piece(const struct llama_model* model, llama_token to
|
||||
return piece;
|
||||
}
|
||||
|
||||
std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string llama_detokenize(const llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string text;
|
||||
text.resize(std::max(text.capacity(), tokens.size()));
|
||||
int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
@@ -3359,6 +3395,7 @@ std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token>
|
||||
return text;
|
||||
}
|
||||
|
||||
|
||||
bool llama_should_add_bos_token(const llama_model * model) {
|
||||
const int add_bos = llama_add_bos_token(model);
|
||||
|
||||
|
||||
@@ -53,6 +53,8 @@ struct llama_lora_adapter_container : llama_lora_adapter_info {
|
||||
struct llama_lora_adapter * adapter;
|
||||
};
|
||||
|
||||
using llama_tokens = std::vector<llama_token>;
|
||||
|
||||
// build info
|
||||
extern int LLAMA_BUILD_NUMBER;
|
||||
extern char const * LLAMA_COMMIT;
|
||||
@@ -237,7 +239,7 @@ struct gpt_params {
|
||||
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
||||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||||
|
||||
bool ctx_shift = true;
|
||||
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
||||
bool multiline_input = false; // reverse the usage of `\`
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
@@ -371,6 +373,9 @@ struct gpt_params {
|
||||
bool sweep_bench_output_jsonl = false;
|
||||
};
|
||||
|
||||
|
||||
|
||||
void gpt_params_handle_hf_token(gpt_params & params);
|
||||
void gpt_params_parse_from_env(gpt_params & params);
|
||||
void gpt_params_handle_model_default(gpt_params & params);
|
||||
|
||||
@@ -381,6 +386,15 @@ void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
|
||||
|
||||
struct common_remote_params {
|
||||
std::vector<std::string> headers;
|
||||
long timeout = 0; // CURLOPT_TIMEOUT, in seconds ; 0 means no timeout
|
||||
long max_size = 0; // max size of the response ; unlimited if 0 ; max is 2GB
|
||||
};
|
||||
// get remote file content, returns <http_code, raw_response_body>
|
||||
std::pair<long, std::vector<char>> common_remote_get_content(const std::string& url, const common_remote_params& params);
|
||||
|
||||
//
|
||||
// String utils
|
||||
//
|
||||
@@ -497,6 +511,12 @@ std::vector<llama_token> llama_tokenize(
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_vocab* vocab,
|
||||
const std::string& text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
// tokenizes a token into a piece, optionally renders special/control tokens
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
std::string llama_token_to_piece(
|
||||
@@ -513,70 +533,16 @@ std::string llama_token_to_piece(
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
// optionally renders special/control tokens
|
||||
std::string llama_detokenize(
|
||||
llama_context * ctx,
|
||||
const llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
|
||||
|
||||
// Uses the value from the model metadata if possible, otherwise
|
||||
// defaults to true when model type is SPM, otherwise false.
|
||||
bool llama_should_add_bos_token(const llama_model * model);
|
||||
|
||||
//
|
||||
// Chat template utils
|
||||
//
|
||||
//struct common_tool_call {
|
||||
// std::string name;
|
||||
// std::string arguments;
|
||||
// std::string id;
|
||||
//};
|
||||
//
|
||||
//// same with llama_chat_message, but uses std::string
|
||||
//struct common_chat_msg {
|
||||
// std::string role;
|
||||
// std::string content;
|
||||
// std::vector<common_tool_call> tool_calls;
|
||||
// std::string reasoning_content = "";
|
||||
//};
|
||||
|
||||
//// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
//bool llama_chat_verify_template(const struct llama_model* , const std::string& tmpl, bool use_jinja);
|
||||
//
|
||||
//namespace minja {
|
||||
// class chat_template;
|
||||
//}
|
||||
//
|
||||
//typedef minja::chat_template common_chat_template;
|
||||
//
|
||||
//struct common_chat_templates {
|
||||
// bool has_explicit_template; // Model had builtin template or template overridde was specified.
|
||||
// std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
|
||||
// std::unique_ptr<common_chat_template> template_tool_use;
|
||||
//};
|
||||
//
|
||||
//
|
||||
//// CPP wrapper for llama_chat_apply_template
|
||||
//// If the built-in template is not supported, we default to chatml
|
||||
//// If the custom "tmpl" is not supported, we throw an error
|
||||
//std::string llama_chat_apply_template(
|
||||
// const struct llama_model* model,
|
||||
// const common_chat_template& tmpl,
|
||||
// const std::vector< common_chat_msg>& chat,
|
||||
// bool add_ass,
|
||||
// bool use_jinja);
|
||||
//
|
||||
//// Format single message, while taking into account the position of that message in chat history
|
||||
//std::string llama_chat_format_single(const struct llama_model* model,
|
||||
// const common_chat_template& tmpl,
|
||||
// const std::vector< common_chat_msg>& past_msg,
|
||||
// const common_chat_msg& new_msg,
|
||||
// bool add_ass,
|
||||
// bool use_jinja);
|
||||
//
|
||||
//// Returns an example of formatted chat
|
||||
//std::string llama_chat_format_example(const struct llama_model* model,
|
||||
// const common_chat_template& tmpl, bool use_jinja);
|
||||
//
|
||||
//common_chat_templates llama_chat_templates_from_model(const struct llama_model* model, const std::string& chat_template_override);
|
||||
|
||||
|
||||
//
|
||||
|
||||
Reference in New Issue
Block a user