Fused FFN_UP+FFN_GATE op (#741)

* Fused up+gate+unary for regular (not MoE) FFN - CPU

* WIP CUDA

* Seems to be working on CUDA

For a dense model we get 2-3% speedup for PP and ~0.6% for TG.

* Add command line option

This time the option is ON by default, and one needs to turn it
off via -no-fug or --no-fused-up-gate

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2025-08-31 18:16:36 +03:00
committed by GitHub
parent d55e98519f
commit 8de297b795
10 changed files with 276 additions and 12 deletions

View File

@@ -611,6 +611,7 @@ extern "C" {
GGML_OP_MUL_MAT,
GGML_OP_MUL_MAT_ID,
GGML_OP_OUT_PROD,
GGML_OP_FUSED_UP_GATE,
GGML_OP_MOE_FUSED_UP_GATE,
GGML_OP_SCALE,
@@ -1408,6 +1409,13 @@ extern "C" {
struct ggml_tensor * a_gate_b,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_fused_up_gate(
struct ggml_context * ctx,
struct ggml_tensor * up,
struct ggml_tensor * gate,
struct ggml_tensor * b,
enum ggml_unary_op op);
// A: m columns, n rows,
// B: p columns, n rows,
// result is m columns, p rows

View File

@@ -2521,7 +2521,7 @@ static bool ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
return false;
}
static bool ggml_cuda_up_gate_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * next) {
static bool ggml_cuda_moe_up_gate_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * next) {
const ggml_tensor * src0_1 = dst->src[0];
const ggml_tensor * src0_2 = dst->src[1];
const ggml_tensor * src0 = src0_1;
@@ -2972,6 +2972,60 @@ static bool ggml_cuda_up_gate_unary(ggml_backend_cuda_context & ctx, ggml_tensor
return fuse_down;
}
static void ggml_cuda_up_gate_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0_1 = dst->src[0];
const ggml_tensor * src0_2 = dst->src[1];
const ggml_tensor * src1 = dst->src[2];
GGML_ASSERT(ggml_is_quantized(src0_1->type));
GGML_ASSERT(src0_1->type == src0_2->type);
GGML_ASSERT(src1->ne[2] == 1);
GGML_ASSERT(src1->ne[3] == 1);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0_1->buffer));
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0_2->buffer));
auto stream = ctx.stream();
auto ne10_padded = GGML_PAD(src1->ne[0], MATRIX_ROW_PADDING);
auto nb10_padded = ne10_padded*sizeof(block_q8_1)/QK8_1;
auto quantized_size = nb10_padded*src1->ne[1];
if (src1->ne[1] > 8) {
quantized_size += get_mmq_x_max_host(ggml_cuda_info().devices[ctx.device].cc)*sizeof(block_q8_1_mmq);
}
ggml_cuda_pool_alloc<float> dst_up(ctx.pool(), ggml_nelements(dst));
ggml_cuda_pool_alloc<char> src1_quantized(ctx.pool(), quantized_size);
if (src1->ne[1] <= 8) {
quantize_row_q8_1_cuda((const float *)src1->data, (void *)src1_quantized.get(), src1->ne[0], src1->ne[1], 1, ne10_padded,
src0_1->type, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_vec_q(ctx, src0_1, src1, dst, (const char *)src0_1->data, nullptr, src1_quantized.get(), dst_up.get(),
0, src0_1->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_vec_q(ctx, src0_2, src1, dst, (const char *)src0_2->data, nullptr, src1_quantized.get(), (float *)dst->data,
0, src0_2->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
} else {
quantize_mmq_q8_1_cuda((const float *)src1->data, src1_quantized.get(), src1->ne[0], src1->ne[1], 1, ne10_padded, src0_1->type, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_q(ctx, src0_1, src1, dst, (const char *)src0_1->data, nullptr, src1_quantized.get(), dst_up.get(),
0, src0_1->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
ggml_cuda_op_mul_mat_q(ctx, src0_2, src1, dst, (const char *)src0_2->data, nullptr, src1_quantized.get(), (float *)dst->data,
0, src0_1->ne[1], src1->ne[1], ne10_padded, stream);
CUDA_CHECK(cudaGetLastError());
}
ggml_fused_mul_unary(ctx, (ggml_unary_op)dst->op_params[0], ggml_nelements(dst),
(const float *)dst->data, dst_up.get(), (float *)dst->data);
CUDA_CHECK(cudaGetLastError());
}
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst, struct ggml_tensor * next, bool& skip_next) {
// why is this here instead of mul_mat?
if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
@@ -3097,7 +3151,10 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
skip_next = ggml_cuda_mul_mat_id(ctx, dst, next);
break;
case GGML_OP_MOE_FUSED_UP_GATE:
skip_next = ggml_cuda_up_gate_unary(ctx, dst, next);
skip_next = ggml_cuda_moe_up_gate_unary(ctx, dst, next);
break;
case GGML_OP_FUSED_UP_GATE:
ggml_cuda_up_gate_unary(ctx, dst);
break;
case GGML_OP_SCALE:
ggml_cuda_op_scale(ctx, dst);
@@ -3950,10 +4007,12 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_MOE_FUSED_UP_GATE:
case GGML_OP_FUSED_UP_GATE:
{
bool is_fused_up_gate = op->op == GGML_OP_MOE_FUSED_UP_GATE || op->op == GGML_OP_FUSED_UP_GATE;
struct ggml_tensor * a = op->src[0];
struct ggml_tensor * b = op->op == GGML_OP_MOE_FUSED_UP_GATE ? op->src[2] : op->src[1];
if (op->op == GGML_OP_MOE_FUSED_UP_GATE && a->type != op->src[1]->type) {
struct ggml_tensor * b = is_fused_up_gate ? op->src[2] : op->src[1];
if (is_fused_up_gate && a->type != op->src[1]->type) {
printf("%s: returning false for GGML_OP_MOE_FUSED_UP_GATE because src0->type != src1->type\n", __func__);
return false;
}

View File

@@ -108,6 +108,7 @@ static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) {
case GGML_TYPE_IQ4_KT:
return MMQ_Q8_1_DS_LAYOUT_D4;
default:
fprintf(stderr, "Unhandled type %s (%d)\n", ggml_type_name(type_x), type_x);
GGML_ABORT("fatal error");
break;
}

View File

@@ -4054,6 +4054,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"MUL_MAT",
"MUL_MAT_ID",
"OUT_PROD",
"FUSED_UP_GATE",
"MOE_FUSED_UP_GATE",
"SCALE",
@@ -4115,7 +4116,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK",
};
static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 82");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@@ -4151,6 +4152,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"X[i]*Y",
"X*Y",
"X*Y1&X*Y2",
"X*Y1&X*Y2",
"x*v",
"y-\\>view(x)",
@@ -4211,7 +4213,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)",
};
static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 82");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@@ -7162,6 +7164,44 @@ struct ggml_tensor * ggml_moe_up_gate_ext(
return result;
}
struct ggml_tensor * ggml_fused_up_gate(
struct ggml_context * ctx,
struct ggml_tensor * up,
struct ggml_tensor * gate,
struct ggml_tensor * b,
enum ggml_unary_op op) {
if (!ggml_is_quantized(up->type) || up->type != gate->type || !ggml_are_same_shape(up, gate)) {
struct ggml_tensor * result_up = ggml_mul_mat(ctx, up, b);
struct ggml_tensor * result_gate = ggml_mul_mat(ctx, gate, b);
return ggml_fused_mul_unary(ctx, result_gate, result_up, op);
}
GGML_ASSERT(!ggml_is_transposed(up));
GGML_ASSERT(!ggml_is_transposed(gate));
GGML_ASSERT(up->ne[2] == 1); // as is 3d (one matrix per expert)
GGML_ASSERT(up->ne[3] == 1); // as is 3d (one matrix per expert)
GGML_ASSERT(b->ne[2] == 1); // b is 3d
GGML_ASSERT(b->ne[3] == 1); // b is 3d
GGML_ASSERT(up->ne[0] == b->ne[0]); // can_mul_mat
const bool is_node = false;
const int64_t ne[4] = { up->ne[1], b->ne[1], 1, 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_FUSED_UP_GATE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = up;
result->src[1] = gate;
result->src[2] = b;
result->src[3] = NULL;
result->src[4] = NULL;
ggml_set_op_params_i32(result, 0, (int32_t) op);
return result;
}
// ggml_out_prod
@@ -15667,6 +15707,75 @@ static void ggml_compute_forward_mul_mat_id_up_gate(
#undef MMID_MATRIX_ROW
}
static void ggml_compute_forward_mul_mat_up_gate(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == dst->src[1]->type);
GGML_ASSERT(ggml_are_same_shape(dst->src[0], dst->src[1]));
GGML_ASSERT(dst->type == GGML_TYPE_F32);
const struct ggml_tensor * src1 = dst->src[2];
const struct ggml_tensor * src0_1 = dst->src[0];
const struct ggml_tensor * src0_2 = dst->src[1];
const struct ggml_tensor * src0 = src0_1; // so GGML_TENSOR_BINARY_OP_LOCALS works
GGML_ASSERT(ggml_is_quantized(src0_1->type) && src0_1->type == src0_2->type);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ne13 == 1);
ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
char * wdata = params->wdata;
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
const size_t nbw2 = nbw1*ne11;
const size_t nbw3 = nbw2*ne12;
assert(params->wsize >= ne13*nbw3);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
ne10);
}
}
}
ggml_barrier(params->shared);
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
if (!iqk_moe_fused_up_gate(ne01, ne11, ne00, ne11, dst->op_params[0],
type, src0_1->data, src0_2->data, nb01,
vec_dot_type, (const char *)wdata, row_size,
NULL, NULL,
(float *)dst->data, nb1, nb2,
NULL, ith, nth)) GGML_ABORT("fatal error");
}
#endif
// ggml_compute_forward_out_prod
@@ -20403,6 +20512,10 @@ static bool ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_mul_mat_id_up_gate(params, tensor);
} break;
case GGML_OP_FUSED_UP_GATE:
{
ggml_compute_forward_mul_mat_up_gate(params, tensor);
} break;
case GGML_OP_OUT_PROD:
{
ggml_compute_forward_out_prod(params, tensor);
@@ -21172,6 +21285,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
GGML_ABORT("fatal error"); // TODO: not implemented
}
case GGML_OP_FUSED_UP_GATE:
{
GGML_ABORT("fatal error"); // TODO: not implemented
}
case GGML_OP_OUT_PROD:
{
GGML_ABORT("fatal error"); // TODO: not implemented
@@ -22189,6 +22306,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_MOE_FUSED_UP_GATE:
case GGML_OP_FUSED_UP_GATE:
case GGML_OP_OUT_PROD:
{
n_tasks = n_threads;
@@ -22411,6 +22529,16 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
cur += n_as * sizeof(int64_t); // matrix_row_counts
cur += n_as * src2->ne[2] * sizeof(int64_t); // matrix_rows
} break;
case GGML_OP_FUSED_UP_GATE:
{
cur = 0;
const struct ggml_tensor * src0 = node->src[0];
const struct ggml_tensor * src2 = node->src[2];
const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
if (src2->type != vec_dot_type) {
cur += ggml_row_size(vec_dot_type, node->src[1]->ne[0]) * ggml_nrows(node->src[1]);
}
} break;
case GGML_OP_OUT_PROD:
{
if (ggml_is_quantized(node->src[0]->type)) {

View File

@@ -739,7 +739,7 @@ extern "C" IQK_API bool iqk_moe_fused_up_gate(long Nx, long Ny, long ne00, int n
float * C, long nb1, long nb2, const void * vrow_mapping, int ith, int nth) {
const mmid_row_mapping * row_mapping = (const mmid_row_mapping *)vrow_mapping;
assert(row_mapping != nullptr);
//assert(row_mapping != nullptr);
MulMat mm;