Fix q8_0 repacking issues on AVX2 (#708)

Q8_0 needs Q0_0_X4, but Q8_0_R8 needs Q8_2_X4.
So, if we decide to repack a Q8_0 MoE tensor to Q8_0_R8,
iqk_moe_fused_mul_unary fails because the activations were
prepared as Q0_0_X4, but we now need Q8_2_X4.

For now a simple fix: just take the slow path, do not repack.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2025-08-19 19:49:58 +03:00
committed by GitHub
parent bc2cce5ce1
commit a9eeef53f3

View File

@@ -737,46 +737,45 @@ extern "C" IQK_API bool iqk_moe_fused_up_gate(long Nx, long Ny, long ne00, int n
auto etypeA = ggml_type(typeA);
if (auto dequant_type = MulMat::is_dequant_better(etypeA, Ny); dequant_type != etypeA) {
if (!MulMat::prepare(dequant_type, typeB, ne00, mm, Ny)) {
return false;
}
if (MulMat::prepare(dequant_type, typeB, ne00, mm, Ny)) {
constexpr int k_x_step = 64;
constexpr int k_x_step = 64;
auto num_rows = MulMat::num_rows(ggml_type(dequant_type));
GGML_ASSERT(Nx%num_rows == 0);
auto nrc_x = (Nx/num_rows + nth - 1)/nth;
auto first_x = ith*nrc_x;
if (first_x + nrc_x > Nx/num_rows) nrc_x = Nx/num_rows - first_x;
first_x *= num_rows;
nrc_x *= num_rows;
auto num_rows = MulMat::num_rows(ggml_type(dequant_type));
GGML_ASSERT(Nx%num_rows == 0);
auto nrc_x = (Nx/num_rows + nth - 1)/nth;
auto first_x = ith*nrc_x;
if (first_x + nrc_x > Nx/num_rows) nrc_x = Nx/num_rows - first_x;
first_x *= num_rows;
nrc_x *= num_rows;
size_t row_size_qx = ggml_row_size(dequant_type, ne00);
size_t row_size_qy = strideB;
size_t row_size_qx = ggml_row_size(dequant_type, ne00);
size_t row_size_qy = strideB;
DataInfo info{C + first_x, (const char *)B, nb1/sizeof(float), row_size_qy, 0, ne11, row_mapping, nb2/sizeof(float)};
DataInfo info{C + first_x, (const char *)B, nb1/sizeof(float), row_size_qy, 0, ne11, row_mapping, nb2/sizeof(float)};
auto& f = thread_local_work_buffer();
auto& f = thread_local_work_buffer();
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
if (f.size() < 2*row_size_qx*this_nrc_x) f.resize(2*row_size_qx*this_nrc_x);
auto Xu = f.data();
auto Xg = f.data() + row_size_qx*this_nrc_x;
if (!iqk_convert_repack(typeA, ne00, (const char *)Aup + (first_x + ix)*strideA, strideA, Xu, ne00, this_nrc_x)) {
GGML_ABORT("Fatal error");
for (int ix = 0; ix < nrc_x; ix += k_x_step) {
auto this_info = info;
this_info.s += ix;
int this_nrc_x = ix + k_x_step <= nrc_x ? k_x_step : nrc_x - ix;
if (f.size() < 2*row_size_qx*this_nrc_x) f.resize(2*row_size_qx*this_nrc_x);
auto Xu = f.data();
auto Xg = f.data() + row_size_qx*this_nrc_x;
if (!iqk_convert_repack(typeA, ne00, (const char *)Aup + (first_x + ix)*strideA, strideA, Xu, ne00, this_nrc_x)) {
GGML_ABORT("Fatal error");
}
if (!iqk_convert_repack(typeA, ne00, (const char *)Agate + (first_x + ix)*strideA, strideA, Xg, ne00, this_nrc_x)) {
GGML_ABORT("Fatal error");
}
auto up_b = up_b_c ? (const float *)up_b_c + first_x + ix : nullptr;
auto gate_b = gate_b_c ? (const float *)gate_b_c + first_x + ix : nullptr;
mm.mul_mat_up_gate_NxM(ne00, Xu, Xg, row_size_qx, up_b, gate_b, this_info, this_nrc_x, Ny, unary_op);
}
if (!iqk_convert_repack(typeA, ne00, (const char *)Agate + (first_x + ix)*strideA, strideA, Xg, ne00, this_nrc_x)) {
GGML_ABORT("Fatal error");
}
auto up_b = up_b_c ? (const float *)up_b_c + first_x + ix : nullptr;
auto gate_b = gate_b_c ? (const float *)gate_b_c + first_x + ix : nullptr;
mm.mul_mat_up_gate_NxM(ne00, Xu, Xg, row_size_qx, up_b, gate_b, this_info, this_nrc_x, Ny, unary_op);
}
return true;
return true;
}
}