Fused MoE ffn_up and ffn_gate (#229)

* Fusing MoE up * unary(gate)

* Fusing MoE up * unary(gate): CUDA

We get ~13% speedup for PP-512 and ~2% for TG-128
for DeepSeek-Lite

* On CUDA also fuse MoE down * (up * unary(gate))

in case the MUL_MAT_ID op for the down experts is the next
op in the graph.

* Command line option to enable fused MoE up*unary(gate)

* Add fmoe option to llama-bench

* Adding forgotten gelu, relu, silu on ARM

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2025-02-23 14:31:11 +02:00
committed by GitHub
parent 46bf73a37f
commit ac1d259b93
12 changed files with 730 additions and 81 deletions

View File

@@ -2516,6 +2516,7 @@ struct llama_cparams {
bool offload_kqv;
bool flash_attn;
bool mla_attn;
bool fused_moe_up_gate;
enum llama_pooling_type pooling_type;
@@ -8628,30 +8629,20 @@ llm_expert_gating_func_type gating_op,
}
cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
ggml_tensor * up = llm_build_lora_mm_id(lctx, ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
ggml_tensor * gate = llm_build_lora_mm_id(lctx, ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(gate, "ffn_moe_gate", il);
ggml_tensor * par;
if (lctx.cparams.fused_moe_up_gate) {
par = ggml_moe_up_gate(ctx, up_exps, gate_exps, cur, selected_experts, type_op == LLM_FFN_SILU ? GGML_UNARY_OP_SILU : GGML_UNARY_OP_GELU);
} else {
ggml_tensor * up = llm_build_lora_mm_id(lctx, ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
// This is equivalent to the commented out code below
ggml_tensor * par = ggml_fused_mul_unary(ctx, gate, up, type_op == LLM_FFN_SILU ? GGML_UNARY_OP_SILU : GGML_UNARY_OP_GELU);
ggml_tensor * gate = llm_build_lora_mm_id(lctx, ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(gate, "ffn_moe_gate", il);
//switch (type_op) {
// case LLM_FFN_SILU:
// {
// gate = ggml_silu(ctx, gate);
// cb(gate, "ffn_moe_silu", il);
// } break;
// case LLM_FFN_GELU:
// {
// gate = ggml_gelu(ctx, gate);
// cb(gate, "ffn_moe_gelu", il);
// } break;
// default:
// GGML_ABORT("fatal error");
//}
//ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
// This is equivalent to the commented out code below
par = ggml_fused_mul_unary(ctx, gate, up, type_op == LLM_FFN_SILU ? GGML_UNARY_OP_SILU : GGML_UNARY_OP_GELU);
}
cb(par, "ffn_moe_gate_par", il);
ggml_tensor * experts = llm_build_lora_mm_id(lctx, ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
@@ -8907,6 +8898,7 @@ struct llm_build_context {
const bool flash_attn;
const bool mla_attn;
const bool fused_moe_up_gate;
const enum llama_pooling_type pooling_type;
const enum llama_rope_type rope_type;
@@ -8958,6 +8950,7 @@ struct llm_build_context {
n_ctx_orig (cparams.n_ctx_orig_yarn),
flash_attn (cparams.flash_attn),
mla_attn (cparams.mla_attn),
fused_moe_up_gate(cparams.fused_moe_up_gate),
pooling_type (cparams.pooling_type),
rope_type (hparams.rope_type),
cb (cb),
@@ -17605,6 +17598,7 @@ struct llama_context_params llama_context_default_params() {
/*.offload_kqv =*/ true,
/*.flash_attn =*/ false,
/*.mla_attn =*/ false,
/*.fused_moe_up_gate =*/ false,
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
};
@@ -17804,6 +17798,7 @@ struct llama_context * llama_new_context_with_model(
cparams.offload_kqv = params.offload_kqv;
cparams.flash_attn = params.flash_attn;
cparams.mla_attn = params.mla_attn;
cparams.fused_moe_up_gate= params.fused_moe_up_gate;
cparams.pooling_type = params.pooling_type;
cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
@@ -17871,6 +17866,7 @@ struct llama_context * llama_new_context_with_model(
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
LLAMA_LOG_INFO("%s: mla_attn = %d\n", __func__, cparams.mla_attn);
LLAMA_LOG_INFO("%s: fused_moe = %d\n", __func__, cparams.fused_moe_up_gate);
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);