mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
Port speculative decoding from upstream to llama-server (#645)
* server : integrate speculative decoding
* server: Fix field names
* server: fix include, whitespace
* fix compile errors in speculative.cpp
* add llama_sampling_sample_and_accept_n to sampling
* finish porting speculative decoding in server
* port functions from common/speculative, common/sampling
* remove arg
* fix function names
* init params_dft to none
* correct value for n_ctx
* prefix kv cache tensors with model name to avoid conflict
* fix call arguments
* fix spec decoding args
* correct slot.id
* use n_max
* port the rest of sampling funcs
* fix func arguments
* slot.id starts at 1?
* Revert "prefix kv cache tensors with model name to avoid conflict"
This reverts commit fbd5dfd866.
* disable draft logging
* disable logging in speculative.cpp
in mainline, these would be LOG_DEBUG, but since ik_llama doesnt support
it, logging is disabled entirely
* add more draft model parameters
* fix
* pass flash_attn
* add speculative params for parity
* set speculative params in launch_slot_with_task instead
This commit is contained in:
@@ -76,6 +76,7 @@ add_library(${TARGET} STATIC
|
||||
minja.hpp
|
||||
ngram-cache.h
|
||||
ngram-cache.cpp
|
||||
speculative.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
|
||||
@@ -505,6 +505,11 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
params.n_ctx = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "-cd" || arg == "--ctx-size-draft") {
|
||||
CHECK_ARG
|
||||
params.n_ctx_draft = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--grp-attn-n" || arg == "-gan") {
|
||||
CHECK_ARG
|
||||
params.grp_attn_n = std::stoi(argv[i]);
|
||||
@@ -725,7 +730,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
if (arg == "--cfg-negative-prompt") {
|
||||
CHECK_ARG
|
||||
sparams.cfg_negative_prompt = argv[i];
|
||||
@@ -765,11 +770,21 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
params.n_keep = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--draft") {
|
||||
if (arg == "--draft" || arg == "--draft-max" || arg == "--draft-n") {
|
||||
CHECK_ARG
|
||||
params.n_draft = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--draft-min" || arg == "--draft-n-min") {
|
||||
CHECK_ARG
|
||||
params.n_draft_min = std::stoi(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--draft-p-min") {
|
||||
CHECK_ARG
|
||||
params.p_draft_min = std::stof(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--chunks") {
|
||||
CHECK_ARG
|
||||
params.n_chunks = std::stoi(argv[i]);
|
||||
@@ -934,6 +949,14 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
params.cache_type_v = argv[++i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-ctkd" || arg == "--cache-type-k-draft") {
|
||||
params.cache_type_k_draft = argv[++i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-ctvd" || arg == "--cache-type-v-draft") {
|
||||
params.cache_type_v_draft = argv[++i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-mli" || arg == "--multiline-input") {
|
||||
params.multiline_input = true;
|
||||
return true;
|
||||
@@ -1071,7 +1094,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
size_t pos = 0;
|
||||
while ((pos = servers.find(",")) != std::string::npos) {
|
||||
std::string server = servers.substr(0, pos);
|
||||
ggml_backend_rpc_buffer_type(server.c_str());
|
||||
ggml_backend_rpc_buffer_type(server.c_str());
|
||||
servers.erase(0, pos + 1);
|
||||
}
|
||||
ggml_backend_rpc_buffer_type(servers.c_str());
|
||||
@@ -1693,7 +1716,6 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" });
|
||||
options.push_back({ "speculative", "-tbd, --threads-batch-draft N",
|
||||
"number of threads to use during batch and prompt processing (default: same as --threads-draft)" });
|
||||
options.push_back({ "speculative", " --draft N", "number of tokens to draft for speculative decoding (default: %d)", params.n_draft });
|
||||
options.push_back({ "speculative", "-ps, --p-split N", "speculative decoding split probability (default: %.1f)", (double)params.p_split });
|
||||
options.push_back({ "*", "-lcs, --lookup-cache-static FNAME",
|
||||
"path to static lookup cache to use for lookup decoding (not updated by generation)" });
|
||||
@@ -1701,6 +1723,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
"path to dynamic lookup cache to use for lookup decoding (updated by generation)" });
|
||||
|
||||
options.push_back({ "*", "-c, --ctx-size N", "size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx });
|
||||
options.push_back({ "*", "-cd, --ctx-size-draft N", "size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.n_ctx_draft });
|
||||
options.push_back({ "*", "-n, --predict N", "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict });
|
||||
options.push_back({ "*", "-b, --batch-size N", "logical maximum batch size (default: %d)", params.n_batch });
|
||||
options.push_back({ "*", "-ub, --ubatch-size N", "physical maximum batch size (default: %d)", params.n_ubatch });
|
||||
@@ -1811,6 +1834,8 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "*", "-nkvo, --no-kv-offload", "disable KV offload" });
|
||||
options.push_back({ "*", "-ctk, --cache-type-k TYPE", "KV cache data type for K (default: %s)", params.cache_type_k.c_str() });
|
||||
options.push_back({ "*", "-ctv, --cache-type-v TYPE", "KV cache data type for V (default: %s)", params.cache_type_v.c_str() });
|
||||
options.push_back({ "*", "-ctkd, --cache-type-k-draft TYPE", "KV cache data type for K for the draft model" });
|
||||
options.push_back({ "*", "-ctvd, --cache-type-v-draft TYPE", "KV cache data type for V for the draft model" });
|
||||
|
||||
options.push_back({ "perplexity" });
|
||||
options.push_back({ "perplexity", " --all-logits", "return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false" });
|
||||
@@ -1893,6 +1918,10 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "*", "-hfr, --hf-repo REPO", "Hugging Face model repository (default: unused)" });
|
||||
options.push_back({ "*", "-hff, --hf-file FILE", "Hugging Face model file (default: unused)" });
|
||||
options.push_back({ "*", "-hft, --hf-token TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)" });
|
||||
options.push_back({ "*", "--draft-max, --draft, --draft-n N",
|
||||
"number of tokens to draft for speculative decoding (default: %d)", params.n_draft });
|
||||
options.push_back({ "*", "--draft-min, --draft-n-min N", "minimum number of draft tokens to use for speculative decoding" });
|
||||
options.push_back({ "*", "--draft-p-min P", "minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.p_draft_min });
|
||||
|
||||
options.push_back({ "retrieval" });
|
||||
options.push_back({ "retrieval", " --context-file FNAME", "file to load context from (repeat to specify multiple files)" });
|
||||
@@ -2052,7 +2081,7 @@ std::string string_join(const std::vector<std::string> & strs, const std::string
|
||||
if (strs.empty()) {
|
||||
return "";
|
||||
}
|
||||
|
||||
|
||||
std::ostringstream oss;
|
||||
for (size_t i = 0; i < strs.size(); ++i) {
|
||||
if (i > 0) {
|
||||
|
||||
@@ -83,10 +83,13 @@ struct gpt_params {
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_ctx_draft = 0; // context size for draft model
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
||||
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
||||
int32_t n_draft_min = 1; // minimum number of tokens to draft during speculative decoding
|
||||
float p_draft_min = 0.8f; // minimum speculative decoding probability (greedy)
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
@@ -207,6 +210,8 @@ struct gpt_params {
|
||||
|
||||
std::string cache_type_k = "f16"; // KV cache data type for the K
|
||||
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||||
std::string cache_type_k_draft = ""; // KV cache data type for K for the draft model
|
||||
std::string cache_type_v_draft = ""; // KV cache data type for V for the draft model
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
|
||||
@@ -442,7 +442,9 @@ static llama_token_data_array llama_sampling_prepare_impl(
|
||||
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||
ctx_sampling->cur_p = { cur.data(), cur.size(), false };
|
||||
|
||||
llama_token_data_array & cur_p = ctx_sampling->cur_p;
|
||||
|
||||
// apply penalties
|
||||
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
|
||||
@@ -506,3 +508,47 @@ void llama_sampling_accept(
|
||||
llama_sampler_dry_accept(ctx_sampling->smpl, id);
|
||||
}
|
||||
}
|
||||
|
||||
llama_token_data_array * llama_sampling_get_candidates(struct llama_sampling_context * ctx_sampling) {
|
||||
return &ctx_sampling->cur_p;
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_sampling_sample_and_accept_n(struct llama_sampling_context * gsmpl, struct llama_context * ctx, const std::vector<llama_token> & draft) {
|
||||
std::vector<int> idxs(draft.size() + 1);
|
||||
for (size_t i = 0; i < idxs.size(); ++i) {
|
||||
idxs[i] = i;
|
||||
}
|
||||
|
||||
return llama_sampling_sample_and_accept_n(gsmpl, ctx, idxs, draft);
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_sampling_sample_and_accept_n(struct llama_sampling_context * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const std::vector<llama_token> & draft) {
|
||||
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
|
||||
|
||||
std::vector<llama_token> result;
|
||||
result.reserve(idxs.size());
|
||||
|
||||
size_t i = 0;
|
||||
for (; i < draft.size(); i++) {
|
||||
const llama_token id = llama_sampling_sample(gsmpl, ctx, nullptr, idxs[i]);
|
||||
|
||||
llama_sampling_accept(gsmpl, ctx, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
|
||||
if (draft[i] != id) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (i == draft.size()) {
|
||||
const llama_token id = llama_sampling_sample(gsmpl, ctx, nullptr, idxs[i]);
|
||||
|
||||
llama_sampling_accept(gsmpl, ctx, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
@@ -101,6 +101,8 @@ struct llama_sampling_context {
|
||||
|
||||
size_t n_valid; // Number of correct top tokens with correct probabilities.
|
||||
|
||||
llama_token_data_array cur_p; // current candidates
|
||||
|
||||
std::mt19937 rng;
|
||||
};
|
||||
|
||||
@@ -176,3 +178,11 @@ void llama_sampling_accept(
|
||||
struct llama_context * ctx_main,
|
||||
llama_token id,
|
||||
bool apply_grammar);
|
||||
|
||||
// returns at least 1 token, up to draft.size()
|
||||
// access the internal list of current candidate tokens
|
||||
llama_token_data_array * llama_sampling_get_candidates(struct llama_sampling_context * ctx_sampling);
|
||||
|
||||
std::vector<llama_token> llama_sampling_sample_and_accept_n(struct llama_sampling_context * gsmpl, struct llama_context * ctx, const std::vector<llama_token> & draft);
|
||||
|
||||
std::vector<llama_token> llama_sampling_sample_and_accept_n(struct llama_sampling_context * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const std::vector<llama_token> & draft);
|
||||
|
||||
275
common/speculative.cpp
Normal file
275
common/speculative.cpp
Normal file
@@ -0,0 +1,275 @@
|
||||
#include "speculative.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
|
||||
struct llama_speculative {
|
||||
struct llama_context * ctx;
|
||||
struct llama_sampling_context * smpl;
|
||||
|
||||
llama_batch batch;
|
||||
std::vector<llama_token> prompt;
|
||||
};
|
||||
|
||||
struct llama_speculative * llama_speculative_init(
|
||||
struct llama_context * ctx_dft) {
|
||||
auto * result = new llama_speculative {
|
||||
/* .ctx = */ ctx_dft,
|
||||
/* .smpl = */ nullptr,
|
||||
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
|
||||
/* .prompt = */ {},
|
||||
};
|
||||
|
||||
// TODO: optimize or pass from outside?
|
||||
#if 0
|
||||
{
|
||||
llama_sampling_params params;
|
||||
params.no_perf = false;
|
||||
|
||||
params.top_k = 40;
|
||||
params.top_p = 0.9;
|
||||
|
||||
params.samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
COMMON_SAMPLER_TYPE_INFILL,
|
||||
};
|
||||
|
||||
result->smpl = llama_sampler_init(llama_get_model(ctx_dft), params);
|
||||
}
|
||||
#else
|
||||
{
|
||||
llama_sampling_params params;
|
||||
params.top_k = 10;
|
||||
params.samplers_sequence = {
|
||||
llama_sampler_type::TOP_K,
|
||||
};
|
||||
const auto *model_dft = llama_get_model(ctx_dft);
|
||||
result->smpl = llama_sampling_init(llama_get_model_vocab(model_dft), params);
|
||||
}
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void llama_speculative_free(struct llama_speculative * spec) {
|
||||
if (spec == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
llama_sampling_free(spec->smpl);
|
||||
|
||||
llama_batch_free(spec->batch);
|
||||
|
||||
delete spec;
|
||||
}
|
||||
|
||||
bool llama_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft) {
|
||||
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
|
||||
const struct llama_model * model_dft = llama_get_model(ctx_dft);
|
||||
|
||||
const struct llama_vocab * vocab_tgt = llama_get_model_vocab(model_tgt);
|
||||
const struct llama_vocab * vocab_dft = llama_get_model_vocab(model_dft);
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
LLAMA_LOG_INFO("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
|
||||
|
||||
const bool vocab_type_dft = llama_vocab_type(model_dft);
|
||||
LLAMA_LOG_INFO("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
LLAMA_LOG_ERROR("%s: draft model vocab type must match target model to use speculation but "
|
||||
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
|
||||
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
|
||||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
|
||||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)) {
|
||||
LLAMA_LOG_ERROR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__);
|
||||
LLAMA_LOG_ERROR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_tgt), llama_add_bos_token(model_tgt), llama_token_eos(model_tgt), llama_add_eos_token(model_tgt));
|
||||
LLAMA_LOG_ERROR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_dft), llama_add_bos_token(model_dft), llama_token_eos(model_dft), llama_add_eos_token(model_dft));
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
const int n_vocab_tgt = llama_n_vocab(model_tgt);
|
||||
const int n_vocab_dft = llama_n_vocab(model_dft);
|
||||
|
||||
const int model_diff = std::abs(n_vocab_tgt - n_vocab_dft);
|
||||
|
||||
if (model_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
LLAMA_LOG_ERROR("%s: draft model vocab must closely match target model to use speculation but "
|
||||
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
__func__, n_vocab_tgt, n_vocab_dft, model_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
|
||||
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
|
||||
const char * token_text_dft = llama_token_get_text(model_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LLAMA_LOG_ERROR("%s: draft vocab vocab must match target vocab to use speculation but "
|
||||
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
|
||||
llama_token_to_piece(ctx_tgt, i).c_str(),
|
||||
llama_token_to_piece(ctx_dft, i).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_speculative_gen_draft(
|
||||
struct llama_speculative * spec,
|
||||
struct llama_speculative_params params,
|
||||
const std::vector<llama_token> & prompt_tgt,
|
||||
llama_token id_last) {
|
||||
auto & batch = spec->batch;
|
||||
auto & ctx = spec->ctx;
|
||||
auto & smpl = spec->smpl;
|
||||
auto & prompt = spec->prompt;
|
||||
|
||||
int reuse_i = 0;
|
||||
int reuse_n = 0;
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
|
||||
|
||||
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
|
||||
|
||||
// reuse as much as possible from the old draft context
|
||||
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
|
||||
for (int i = 0; i < (int) prompt.size(); ++i) {
|
||||
int cur = 0;
|
||||
while (i_start + cur < (int) prompt_tgt.size() &&
|
||||
i + cur < (int) prompt.size() &&
|
||||
prompt_tgt[i_start + cur] == prompt[i + cur]) {
|
||||
cur++;
|
||||
}
|
||||
|
||||
if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
|
||||
reuse_i = i;
|
||||
reuse_n = cur;
|
||||
}
|
||||
}
|
||||
|
||||
// LLAMA_LOG_INFO("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
|
||||
|
||||
std::vector<llama_token> result;
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
prompt.clear();
|
||||
} else {
|
||||
// this happens when a previous draft has been discarded (for example, due to being too small), but the
|
||||
// target model agreed with it. in this case, we simply pass back the previous results to save compute
|
||||
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
|
||||
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
|
||||
result.push_back(prompt[i]);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
}
|
||||
}
|
||||
|
||||
// prepare a batch to evaluate any new tokens in the prompt
|
||||
llama_batch_clear(batch);
|
||||
|
||||
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
|
||||
//LLAMA_LOG_INFO("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
|
||||
llama_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
|
||||
|
||||
prompt.push_back(prompt_tgt[i]);
|
||||
}
|
||||
|
||||
// we should rarely end-up here during normal decoding
|
||||
if (batch.n_tokens > 0) {
|
||||
//LLAMA_LOG_INFO("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
}
|
||||
|
||||
const llama_pos n_past = prompt.size();
|
||||
|
||||
// LLAMA_LOG_INFO("%s: n_past = %d\n", __func__, n_past);
|
||||
|
||||
llama_batch_clear(batch);
|
||||
llama_batch_add (batch, id_last, n_past, { 0 }, true);
|
||||
|
||||
prompt.push_back(id_last);
|
||||
|
||||
//LLAMA_LOG_INFO("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
llama_sampling_reset(smpl);
|
||||
|
||||
// sample n_draft tokens from the draft model
|
||||
for (int i = 0; i < params.n_draft; ++i) {
|
||||
llama_batch_clear(batch);
|
||||
|
||||
llama_sampling_sample(smpl, ctx, nullptr, 0);
|
||||
|
||||
const auto * cur_p = llama_sampling_get_candidates(smpl);
|
||||
|
||||
// for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
|
||||
// LLAMA_LOG_INFO(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
// k, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx, cur_p->data[k].id).c_str());
|
||||
// }
|
||||
|
||||
// add drafted token for each sequence
|
||||
const llama_token id = cur_p->data[0].id;
|
||||
|
||||
llama_sampling_accept(smpl, ctx, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
}
|
||||
|
||||
// only collect very high-confidence draft tokens
|
||||
if (cur_p->data[0].p < params.p_min) {
|
||||
break;
|
||||
}
|
||||
|
||||
llama_batch_add(batch, id, n_past + i + 1, { 0 }, true);
|
||||
|
||||
// evaluate the drafted tokens on the draft model
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
prompt.push_back(id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
29
common/speculative.h
Normal file
29
common/speculative.h
Normal file
@@ -0,0 +1,29 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
struct llama_speculative;
|
||||
|
||||
struct llama_speculative_params {
|
||||
int n_draft = 16; // max drafted tokens
|
||||
int n_reuse = 256;
|
||||
|
||||
float p_min = 0.75f; // min probability required to accept a token in the draft
|
||||
};
|
||||
|
||||
struct llama_speculative * llama_speculative_init(struct llama_context * ctx_dft);
|
||||
|
||||
void llama_speculative_free(struct llama_speculative * spec);
|
||||
|
||||
bool llama_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft);
|
||||
|
||||
// sample up to n_draft tokens and add them to the batch using the draft model
|
||||
std::vector<llama_token> llama_speculative_gen_draft(
|
||||
struct llama_speculative * spec,
|
||||
struct llama_speculative_params params,
|
||||
const std::vector<llama_token> & prompt,
|
||||
llama_token id_last);
|
||||
Reference in New Issue
Block a user