diff --git a/src/llama.cpp b/src/llama.cpp index 627024e0..79c2ee1b 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -5716,6 +5716,41 @@ struct llama_data_read { return true; } + void read_kv_cache_data_split(llama_context * ctx, ggml_tensor * tensor, const uint8_t * data, size_t head, size_t row_size, int nrows, int il) { + GGML_ASSERT(il >= 0 && il < int(ctx->model.layers.size())); + GGML_ASSERT(ggml_internal_get_type_traits(tensor->type).row_meta_size == 0); + auto kv = tensor->ne[1] > 1 ? ctx->model.layers[il].wk : ctx->model.layers[il].wv; + auto extra = (ggml_split_tensor_t *)tensor->extra; + auto kv_extra = (ggml_split_tensor_t *)kv->extra; + GGML_ASSERT(extra && kv_extra); + auto ne = kv->ne[1]; + size_t sum_ne = 0; + size_t sum_split_row_size = 0; + GGML_ASSERT(row_size == ggml_row_size(tensor->type, ne)); + std::vector aux; + for (int id = 0; id < extra->n_device; ++id) { + auto split = extra->splits[id]; + GGML_ASSERT(split->type == tensor->type); + auto kv_split = kv_extra->splits[id]; + GGML_ASSERT((split && kv_split) || (!split && !kv_split)); + if (!split) continue; + auto split_row_size = ggml_row_size(tensor->type, kv_split->ne[1]); + aux.resize(split_row_size*nrows); + auto src = data + sum_split_row_size; + auto dst = aux.data(); + for (int row = 0; row < nrows; ++row) { + std::memcpy(dst, src, split_row_size); + dst += split_row_size; + src += row_size; + } + ggml_backend_tensor_set(split, aux.data(), head*split_row_size, nrows*split_row_size); + sum_ne += kv_split->ne[1]; + sum_split_row_size += split_row_size; + } + GGML_ASSERT(sum_ne == ne); + GGML_ASSERT(sum_split_row_size == row_size); + } + bool read_kv_cache_data(struct llama_context * ctx, uint32_t cell_count) { const struct llama_hparams & hparams = ctx->model.hparams; struct llama_kv_cache & kv_self = ctx->kv_self; @@ -5770,7 +5805,11 @@ struct llama_data_read { if (cell_count) { // Read and set the keys for the whole cell range - ggml_backend_tensor_set(kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head * k_size_row, cell_count * k_size_row); + if (kv_self.k_l[il]->extra) { + read_kv_cache_data_split(ctx, kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head, k_size_row, cell_count, il); + } else { + ggml_backend_tensor_set(kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head * k_size_row, cell_count * k_size_row); + } } } @@ -5798,7 +5837,11 @@ struct llama_data_read { if (cell_count) { // Read and set the values for the whole cell range - ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head * v_size_row, cell_count * v_size_row); + if (kv_self.v_l[il]->extra) { + read_kv_cache_data_split(ctx, kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head, v_size_row, cell_count, il); + } else { + ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head * v_size_row, cell_count * v_size_row); + } } } } @@ -5834,6 +5877,9 @@ struct llama_data_read { } if (cell_count) { + if (kv_self.v_l[il]->extra) { + throw std::runtime_error("Transposed V cache is not sypported with split mode 'graph'"); + } // For each row in the transposed matrix, read the values for the whole cell range for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { const size_t dst_offset = (kv_self.head + j * kv_self.size) * v_size_el;