Support for dots.llm1 models (#573)

* Add llama.cpp changes for dots1 support

* Add python changes for dots1 support

* Fix to make it convert

* Remove V reshaping, remove BOS by default for dots1 and fix warmup to handle models without BOS

* Minor fix

* Remove commented lines
This commit is contained in:
saood06
2025-07-10 02:37:36 -05:00
committed by GitHub
parent 283753cabc
commit c53cb65251
4 changed files with 326 additions and 3 deletions

View File

@@ -3864,6 +3864,34 @@ class JaisModel(Model):
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
@Model.register("Dots1ForCausalLM")
class Dots1Model(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.DOTS1
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["num_experts"] = self.hparams["n_routed_experts"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
if self.hparams["scoring_func"] == "sigmoid":
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
else:
raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
if "shared_experts" in name:
return [(self.map_tensor_name(name), data_torch)]
return super().modify_tensors(data_torch, name, bid)
@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
class ChatGLMModel(Model):
model_arch = gguf.MODEL_ARCH.CHATGLM

View File

@@ -226,6 +226,7 @@ class MODEL_ARCH(IntEnum):
T5 = auto()
T5ENCODER = auto()
JAIS = auto()
DOTS1 = auto()
class MODEL_TENSOR(IntEnum):
@@ -362,6 +363,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
MODEL_ARCH.JAIS: "jais",
MODEL_ARCH.DOTS1: "dots1",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -1164,6 +1166,30 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.DOTS1: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_EXP_PROBS_B,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
# TODO
}

View File

@@ -257,7 +257,7 @@ class TensorNameMap:
),
MODEL_TENSOR.FFN_EXP_PROBS_B: (
"model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3
"model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
),
# Feed-forward up

View File

@@ -235,6 +235,7 @@ enum llm_arch {
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_COHERE2,
LLM_ARCH_DOTS1,
LLM_ARCH_HUNYUAN_MOE,
LLM_ARCH_UNKNOWN,
};
@@ -292,6 +293,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_COHERE2, "cohere2" },
{ LLM_ARCH_DOTS1, "dots1" },
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -1597,6 +1599,34 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_DOTS1,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
}
},
{
LLM_ARCH_HUNYUAN_MOE,
{
@@ -1663,6 +1693,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MEGREZ,
LLM_CHAT_TEMPLATE_LLAMA4,
LLM_CHAT_TEMPLATE_BITNET,
LLM_CHAT_TEMPLATE_DOTS1,
LLM_CHAT_TEMPLATE_HUNYUAN_MOE,
LLM_CHAT_TEMPLATE_UNKNOWN,
};
@@ -2580,6 +2611,7 @@ enum e_model {
MODEL_40B,
MODEL_65B,
MODEL_70B,
MODEL_142B,
MODEL_236B,
MODEL_314B,
MODEL_405B,
@@ -5214,6 +5246,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_40B: return "40B";
case MODEL_65B: return "65B";
case MODEL_70B: return "70B";
case MODEL_142B: return "142B";
case MODEL_236B: return "236B";
case MODEL_314B: return "314B";
case MODEL_405B: return "405B";
@@ -6066,6 +6099,20 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_DOTS1:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
switch (hparams.n_layer) {
case 62: model.type = e_model::MODEL_142B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_HUNYUAN_MOE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -6170,7 +6217,12 @@ static void llm_load_vocab(
}
// default special tokens
vocab.special_bos_id = 11;
if(model.arch == LLM_ARCH_DOTS1) {
vocab.special_bos_id = -1;
}
else {
vocab.special_bos_id = 11;
}
vocab.special_eos_id = 11;
vocab.special_unk_id = -1;
vocab.special_sep_id = -1;
@@ -9208,6 +9260,54 @@ static bool llm_load_tensors(
layer.ffn_post_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_DOTS1:
{
const int64_t n_ff_exp = hparams.n_ff_exp;
const int64_t n_expert_shared = hparams.n_expert_shared;
model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.attn_k_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
layer.attn_q_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
if (i < (int) hparams.n_layer_dense_lead) {
layer.ffn_gate = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
} else {
layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_exp_probs_b = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
if (n_expert == 0) {
throw std::runtime_error("n_expert must be > 0");
}
if (n_expert_used == 0) {
throw std::runtime_error("n_expert_used must be > 0");
}
// MoE branch
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
// Shared expert branch
layer.ffn_gate_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
layer.ffn_down_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
layer.ffn_up_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
}
}
} break;
case LLM_ARCH_HUNYUAN_MOE:
{
model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -16948,6 +17048,153 @@ struct llm_build_context {
return gf;
}
struct ggml_cgraph * build_dots1() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
if ((uint32_t) il < hparams.n_layer_dense_lead) {
cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
} else {
ggml_tensor * moe_out =
llm_build_moe_ffn(ctx0, lctx, cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(enum llm_expert_gating_func_type) hparams.expert_gating_func,
cb, il);
cb(moe_out, "ffn_moe_out", il);
{
ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_hunyuan_moe() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
@@ -17198,7 +17445,7 @@ static struct ggml_cgraph * llama_build_graph(
const llama_vocab * vocab = llama_get_vocab(&lctx);
llama_token bos = llama_token_bos_impl(*vocab);
llama_token eos = llama_token_eos_impl(*vocab);
bool is_warming_up = (batch.n_tokens == 1 && batch.token[0] == bos);
bool is_warming_up = (batch.n_tokens == 1 && (batch.token[0] == ((bos != -1) ? bos : eos)));
struct llm_build_context llm(lctx, batch, cb, worst_case, is_warming_up);
llm.init();
@@ -17394,6 +17641,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_jais();
} break;
case LLM_ARCH_DOTS1:
{
result = llm.build_dots1();
} break;
case LLM_ARCH_HUNYUAN_MOE:
{
result = llm.build_hunyuan_moe();
@@ -21170,6 +21421,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:
case LLM_ARCH_CODESHELL:
case LLM_ARCH_DOTS1:
case LLM_ARCH_HUNYUAN_MOE:
return LLAMA_ROPE_TYPE_NEOX;
@@ -22984,6 +23236,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_MEGREZ;
} else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) {
return LLM_CHAT_TEMPLATE_LLAMA4;
} else if (tmpl_contains("<|endofuserprompt|>")) {
return LLM_CHAT_TEMPLATE_DOTS1;
} else if (tmpl_contains("<|startoftext|>") && tmpl_contains("<|extra_4|>")) {
return LLM_CHAT_TEMPLATE_HUNYUAN_MOE;
}
@@ -23404,6 +23658,21 @@ static int32_t llama_chat_apply_template_internal(
ss << message->content;
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DOTS1) {
// dots.llm1.inst (DOTS1)
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "<|system|>" << message->content << "<|endofsystem|>";
} else if (role == "user") {
ss << "<|userprompt|>" << message->content << "<|endofuserprompt|>";
} else {
ss << "<|response|>" << message->content << "<|endofresponse|>";
}
}
if (add_ass) {
ss << "<|response|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_HUNYUAN_MOE) {
// tencent/Hunyuan-A13B-Instruct
for (auto message : chat) {