IQ4_KS_R4 (#150)

* iq4_ks_r4: Zen4

* iq4_ks_r4: AVX2

* iq4_ks_r4: WIP

* iq4_ks_r4: slightly better Zen4

* iq4_ks_r4: slightly better Zen4

* iq4_ks_r4: NEON

* Minor

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2024-12-18 19:58:21 +01:00
committed by GitHub
parent 59d742b00f
commit dfa12b7f91
10 changed files with 364 additions and 2 deletions

View File

@@ -3868,6 +3868,7 @@ struct llama_model_loader {
case GGML_TYPE_Q8_0_R4: ftype = LLAMA_FTYPE_MOSTLY_Q8_0_R4; break;
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
case GGML_TYPE_IQ4_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_KS; break;
case GGML_TYPE_IQ4_KS_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ4_KS_R4; break;
case GGML_TYPE_IQ4_KSS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_KSS; break;
case GGML_TYPE_IQ2_K: ftype = LLAMA_FTYPE_MOSTLY_IQ2_K; break;
case GGML_TYPE_IQ2_K_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ2_K_R4;break;
@@ -4593,6 +4594,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_Q8_0_R4: return "Q8_0_R4 - 8.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_KS: return "IQ4_KS - 4.25 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_KS_R4:return "IQ4_KS_R4 - 4.25 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_KSS: return "IQ4_KSS - 4.0 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_K: return "IQ2_K - 2.375 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_K_R4: return "IQ2_K_R4 - 2.375 bpw";
@@ -15794,7 +15796,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type = !qs.has_output ? GGML_TYPE_IQ4_K : GGML_TYPE_Q5_K;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KSS) && !qs.has_output) {
ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KSS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS_R4) && !qs.has_output) {
new_type = GGML_TYPE_IQ5_K;
}
else if (new_type != GGML_TYPE_Q8_0 && new_type != GGML_TYPE_Q8_0_R4 && new_type != GGML_TYPE_IQ6_K && new_type != GGML_TYPE_Q6_K_R4 &&
@@ -15859,6 +15861,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (new_type == GGML_TYPE_IQ5_K_R4) {
new_type = GGML_TYPE_IQ5_K;
}
else if (new_type == GGML_TYPE_IQ4_KS_R4) {
new_type = GGML_TYPE_IQ4_KS;
}
else if (new_type == GGML_TYPE_Q4_0_R4) {
new_type = GGML_TYPE_Q4_0;
}
@@ -15949,6 +15954,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KSS) && qs.model.hparams.n_gqa() >= 2) {
new_type = GGML_TYPE_IQ5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS_R4 && qs.model.hparams.n_gqa() >= 2) {
new_type = GGML_TYPE_IQ5_K_R4;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_K && qs.model.hparams.n_gqa() >= 2) {
new_type = GGML_TYPE_IQ5_K;
}
@@ -16053,6 +16061,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS_R4)) {
new_type = GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS_R4 && i_layer < n_layer/8 && !qs.has_imatrix) {
new_type = GGML_TYPE_Q5_K_R4;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
new_type = GGML_TYPE_Q5_K;
@@ -16155,7 +16166,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type == GGML_TYPE_IQ2_KS || new_type == GGML_TYPE_IQ4_KSS || new_type == GGML_TYPE_Q6_K_R4 ||
new_type == GGML_TYPE_Q5_K_R4 || new_type == GGML_TYPE_Q3_K_R4 || new_type == GGML_TYPE_Q2_K_R4 ||
new_type == GGML_TYPE_IQ4_K_R4|| new_type == GGML_TYPE_Q8_K_R8 || new_type == GGML_TYPE_IQ3_K_R4||
new_type == GGML_TYPE_IQ2_K_R4|| new_type == GGML_TYPE_IQ5_K_R4) {
new_type == GGML_TYPE_IQ2_K_R4|| new_type == GGML_TYPE_IQ5_K_R4|| new_type == GGML_TYPE_IQ4_KS_R4) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
@@ -16191,6 +16202,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
case GGML_TYPE_IQ3_K_R4:
case GGML_TYPE_IQ4_KSS:
case GGML_TYPE_IQ4_KS:
case GGML_TYPE_IQ4_KS_R4:
case GGML_TYPE_IQ4_XS_R4:
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
case GGML_TYPE_IQ4_K:
@@ -16322,6 +16334,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q8_0_R4: default_type = GGML_TYPE_Q8_0_R4; break;
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ4_KS: default_type = GGML_TYPE_IQ4_KS; break;
case LLAMA_FTYPE_MOSTLY_IQ4_KS_R4:default_type = GGML_TYPE_IQ4_KS_R4;break;
case LLAMA_FTYPE_MOSTLY_IQ4_KSS: default_type = GGML_TYPE_IQ4_KSS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_K: default_type = GGML_TYPE_IQ2_K; break;
case LLAMA_FTYPE_MOSTLY_IQ2_K_R4:default_type = GGML_TYPE_IQ2_K_R4;break;
@@ -16752,6 +16765,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ5_K;
else chunk_size_multiplier = 4;
}
else if (new_type == GGML_TYPE_IQ4_KS_R4) {
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ4_KS;
else chunk_size_multiplier = 4;
}
else if (new_type == GGML_TYPE_BF16_R16) {
if (tensor->ne[1] % 16 != 0) new_type = GGML_TYPE_BF16;
else chunk_size_multiplier = 16;