A hopefully more efficient adaptive_p sampling (#1161)

* A hopefully more efficient adaptive_p sampling

* Once at it, lets fix the formatting too

* More formatting

* Correctly accumulate sampling time for adaptive_p
This commit is contained in:
Kawrakow
2026-01-19 15:01:55 +02:00
committed by GitHub
parent 6a5c180be9
commit fa58c20c42
5 changed files with 96 additions and 53 deletions

View File

@@ -125,7 +125,7 @@ struct llama_sampling_context * common_sampler_init(const struct llama_vocab* vo
break; break;
} }
} }
return result; return result;
} }
@@ -419,7 +419,7 @@ static void sampler_queue(
case llama_sampler_type::ADAPTIVE_P: use_adaptive_p = true; break; case llama_sampler_type::ADAPTIVE_P: use_adaptive_p = true; break;
default : break; default : break;
} }
} }
if (use_adaptive_p) { if (use_adaptive_p) {
// adaptive p should be put to the last, so we ignore the order in the sampler // adaptive p should be put to the last, so we ignore the order in the sampler
@@ -451,7 +451,7 @@ static llama_token llama_sampling_sample_impl(
if (ctx_sampling->grammar != NULL && is_resampling) { if (ctx_sampling->grammar != NULL && is_resampling) {
float* logits = llama_get_logits_ith(ctx_main, idx); float* logits = llama_get_logits_ith(ctx_main, idx);
// Apply grammar constraints to all candidates // Apply grammar constraints to all candidates
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p); llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p);
} }
if (temp < 0.0) { if (temp < 0.0) {
@@ -471,7 +471,7 @@ static llama_token llama_sampling_sample_impl(
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu); id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else if (adaptive_target >= 0.0f && ctx_sampling->adapt_p_ctx!=nullptr) { } else if (adaptive_target >= 0.0f && ctx_sampling->adapt_p_ctx!=nullptr) {
// adaptive p sampling // adaptive p sampling
llama_prep_adaptive_p(&cur_p, ctx_sampling->adapt_p_ctx); llama_prep_adaptive_p(ctx_main, &cur_p, ctx_sampling->adapt_p_ctx);
sampler_queue(ctx_main, params, ctx_sampling, cur_p, std::max(1, params.min_keep)); sampler_queue(ctx_main, params, ctx_sampling, cur_p, std::max(1, params.min_keep));
id = llama_sample_token_adaptive_p(ctx_main, &cur_p, ctx_sampling->adapt_p_ctx); id = llama_sample_token_adaptive_p(ctx_main, &cur_p, ctx_sampling->adapt_p_ctx);
} else { } else {

View File

@@ -1389,7 +1389,7 @@ LLAMA_API struct llama_grammar* llama_sampler_init_grammar_lazy_patterns(
const float decay, const float decay,
const uint32_t seed); const uint32_t seed);
void llama_prep_adaptive_p( void llama_prep_adaptive_p(struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx); struct llama_sampler_adaptive_p * adapt_p_ctx);

View File

@@ -1038,8 +1038,7 @@ struct llama_sampler_dry* llama_sampler_init_dry_impl(const struct llama_vocab&
llama_token llama_sample_token_adaptive_p_impl( llama_token llama_sample_token_adaptive_p_impl(
struct llama_sampling * smpl, struct llama_sampling * smpl,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx) struct llama_sampler_adaptive_p * adapt_p_ctx) {
{
GGML_ASSERT(candidates->size > 0); GGML_ASSERT(candidates->size > 0);
const int64_t t_start_sample_us = ggml_time_us(); const int64_t t_start_sample_us = ggml_time_us();
@@ -1062,30 +1061,38 @@ llama_token llama_sample_token_adaptive_p_impl(
const size_t idx = std::distance(ctx->cum_probs.begin(), iter); const size_t idx = std::distance(ctx->cum_probs.begin(), iter);
llama_token id = candidates->data[idx].id; llama_token id = candidates->data[idx].id;
if (auto it = ctx->orig_prob_map.find(id); it != ctx->orig_prob_map.end()) {
float update_prob = it->second / ctx->cum_orig_prob;
ctx->weighted_sum = ctx->decay * ctx->weighted_sum + update_prob;
ctx->total_weight = ctx->decay * ctx->total_weight + 1.0f;
}
smpl->t_sample_us += ggml_time_us() - t_start_sample_us; smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
smpl->n_sample++; smpl->n_sample++;
float update_prob = candidates->data[idx].p; // not ideal //float update_prob = candidates->data[idx].p; // not ideal
if (ctx->orig_prob_map.contains(id)) { //if (ctx->orig_prob_map.contains(id)) {
// selected token id is among tracked ids // // selected token id is among tracked ids
update_prob = ctx->orig_prob_map[id] / ctx->cum_orig_prob; // update_prob = ctx->orig_prob_map[id] / ctx->cum_orig_prob;
} //}
// update history with original probability of selected token //// update history with original probability of selected token
ctx->weighted_sum = ctx->decay * ctx->weighted_sum + update_prob; //ctx->weighted_sum = ctx->decay * ctx->weighted_sum + update_prob;
ctx->total_weight = ctx->decay * ctx->total_weight + 1.0f; //ctx->total_weight = ctx->decay * ctx->total_weight + 1.0f;
return id; return id;
} }
void llama_sample_adaptive_p_impl(llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx) void llama_sample_adaptive_p_impl(struct llama_sampling * ctx, llama_token_data_array * candidates,
{ struct llama_sampler_adaptive_p * adapt_p_ctx) {
if (adapt_p_ctx->target < 0.0f) { if (adapt_p_ctx->target < 0.0f) {
// sampler is disabled // sampler is disabled
llama_sample_softmax_impl(nullptr, candidates); llama_sample_softmax_impl(nullptr, candidates);
return; return;
} }
auto t_start = ggml_time_us();
// incomplete softmax because final division can be fused // incomplete softmax because final division can be fused
float max_l = candidates->data[0].logit; float max_l = candidates->data[0].logit;
if (!candidates->sorted) { if (!candidates->sorted) {
@@ -1126,48 +1133,86 @@ void llama_sample_adaptive_p_impl(llama_token_data_array * candidates, struct ll
} }
candidates->sorted = false; candidates->sorted = false;
adapt_p_ctx->max_xform_logit = max_logit; adapt_p_ctx->max_xform_logit = max_logit;
ctx->t_sample_us += ggml_time_us() - t_start;
} }
void llama_prep_adaptive_p_impl( void llama_prep_adaptive_p_impl(struct llama_sampling * smpl,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx) struct llama_sampler_adaptive_p * adapt_p_ctx) {
{ constexpr float kDelta = 16.6f;
auto t_start = ggml_time_us();
if (!candidates->sorted) { if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size, float max_logit = candidates->data[0].logit;
[](const llama_token_data & a, const llama_token_data & b) { for (int j = 1; j < int(candidates->size); ++j) {
return a.logit > b.logit; max_logit = std::max(max_logit, candidates->data[j].logit);
}); }
candidates->sorted = true; float min_logit = max_logit - kDelta;
float cum_prob = 0.0f;
adapt_p_ctx->orig_prob_map.clear();
for (int j = 0; j < int(candidates->size); ++j) {
if (candidates->data[j].logit > min_logit) {
float prob = expf(candidates->data[j].logit - max_logit);
cum_prob += prob;
adapt_p_ctx->orig_prob_map[candidates->data[j].id] = prob;
}
}
adapt_p_ctx->cum_orig_prob = cum_prob;
if (smpl) smpl->t_sample_us += ggml_time_us() - t_start;
return;
} }
const float max_logit = candidates->data[0].logit;
// decide how many tokens to track based on logit delta float max_logit = candidates->data[0].logit;
// i.e. do not track unlikely tokens float min_logit = max_logit - kDelta;
auto iter = std::lower_bound(
candidates->data,
candidates->data + candidates->size,
max_logit - 16.6f, // delta
[](const llama_token_data & data, const float delta) {
return data.logit > delta;
});
const size_t n_track = std::distance(candidates->data, iter);
// store orig_prob_map and cum_orig_prob to estimate original probability later
float cum_prob = 0.0f; float cum_prob = 0.0f;
adapt_p_ctx->orig_prob_map.clear(); adapt_p_ctx->orig_prob_map.clear();
for (size_t i = 0; i < n_track; ++i) { for (int j = 0; j < int(candidates->size); ++j) {
const float prob = expf(candidates->data[i].logit - max_logit); auto logit = candidates->data[j].logit;
if (logit <= min_logit) {
break;
}
float prob = expf(logit - max_logit);
cum_prob += prob; cum_prob += prob;
adapt_p_ctx->orig_prob_map[candidates->data[i].id] = prob; adapt_p_ctx->orig_prob_map[candidates->data[j].id] = prob;
} }
adapt_p_ctx->cum_orig_prob = cum_prob; adapt_p_ctx->cum_orig_prob = cum_prob;
if (smpl) smpl->t_sample_us += ggml_time_us() - t_start;
//if (!candidates->sorted) {
// std::sort(candidates->data, candidates->data + candidates->size,
// [](const llama_token_data & a, const llama_token_data & b) {
// return a.logit > b.logit;
// });
// candidates->sorted = true;
//}
//const float max_logit = candidates->data[0].logit;
//// decide how many tokens to track based on logit delta
//// i.e. do not track unlikely tokens
//auto iter = std::lower_bound(
// candidates->data,
// candidates->data + candidates->size,
// max_logit - kDelta, // delta
// [](const llama_token_data & data, const float delta) {
// return data.logit > delta;
// });
//const size_t n_track = std::distance(candidates->data, iter);
//// store orig_prob_map and cum_orig_prob to estimate original probability later
//float cum_prob = 0.0f;
//adapt_p_ctx->orig_prob_map.clear();
//for (size_t i = 0; i < n_track; ++i) {
// const float prob = expf(candidates->data[i].logit - max_logit);
// cum_prob += prob;
// adapt_p_ctx->orig_prob_map[candidates->data[i].id] = prob;
//}
//adapt_p_ctx->cum_orig_prob = cum_prob;
} }
struct llama_sampler_adaptive_p * llama_init_adaptive_p_impl( struct llama_sampler_adaptive_p * llama_init_adaptive_p_impl(
const float target, const float target,
const float decay, const float decay,
const uint32_t seed) const uint32_t seed) {
{
const float clamped_decay = std::clamp(decay, 0.0f, 0.99f); const float clamped_decay = std::clamp(decay, 0.0f, 0.99f);
return new llama_sampler_adaptive_p { return new llama_sampler_adaptive_p {
/* .target = */ target, /* .target = */ target,

View File

@@ -89,10 +89,12 @@ struct llama_sampler_adaptive_p * llama_init_adaptive_p_impl(
const uint32_t seed); const uint32_t seed);
void llama_prep_adaptive_p_impl( void llama_prep_adaptive_p_impl(
struct llama_sampling * smpl,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx); struct llama_sampler_adaptive_p * adapt_p_ctx);
void llama_sample_adaptive_p_impl( void llama_sample_adaptive_p_impl(
struct llama_sampling * smpl,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx); struct llama_sampler_adaptive_p * adapt_p_ctx);

View File

@@ -7690,14 +7690,12 @@ void llama_sample_dry([[maybe_unused]] struct llama_context* ctx, struct llama_s
void llama_sample_adaptive_p( void llama_sample_adaptive_p(
[[maybe_unused]] struct llama_context * ctx, [[maybe_unused]] struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx) struct llama_sampler_adaptive_p * adapt_p_ctx) {
{ llama_sample_adaptive_p_impl(&ctx->sampling, candidates, adapt_p_ctx);
llama_sample_adaptive_p_impl(candidates, adapt_p_ctx);
} }
void llama_prep_adaptive_p(llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx) void llama_prep_adaptive_p(struct llama_context * ctx, llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx) {
{ llama_prep_adaptive_p_impl(&ctx->sampling, candidates, adapt_p_ctx);
llama_prep_adaptive_p_impl(candidates, adapt_p_ctx);
} }
@@ -7743,8 +7741,7 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra
llama_token llama_sample_token_adaptive_p( llama_token llama_sample_token_adaptive_p(
struct llama_context * ctx, struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_sampler_adaptive_p * adapt_p_ctx) struct llama_sampler_adaptive_p * adapt_p_ctx) {
{
return llama_sample_token_adaptive_p_impl(&ctx->sampling, candidates, adapt_p_ctx); return llama_sample_token_adaptive_p_impl(&ctx->sampling, candidates, adapt_p_ctx);
} }
@@ -7800,8 +7797,7 @@ void llama_sampler_dry_accept(struct llama_sampler_dry* smpl, llama_token token)
} }
struct llama_sampler_adaptive_p * llama_init_adaptive_p(const float target, const float decay, const uint32_t seed) struct llama_sampler_adaptive_p * llama_init_adaptive_p(const float target, const float decay, const uint32_t seed) {
{
return llama_init_adaptive_p_impl(target, decay, seed); return llama_init_adaptive_p_impl(target, decay, seed);
} }