Commit Graph

942 Commits

Author SHA1 Message Date
Kawrakow
cce49832c1 Adding Q6_0 (#77)
* Adding q6_0 - basics + AVX2/Zen4 working

* Adding q6_0: CUDA dequantize works, but not mmvq

* Adding q6_0: CUDA mmvq works

* Adding q6_0: CUDA cpy, so Q6_0 can be used for KV-cache

* Add q6_0 to CPU flash attention

Disappointing result: for LlaMA-3.2-1B, q6_0 K- and V-cache
gives about the same PPL as q8_0 K-cache and q4_0 V-cache,
while needing the exact same RAM.
I.e., what was the point?

* q6_0: slightly better kv-cache result

Better than q8_0+q4_0, but not as good as q8_0+iq4_nl

* q6_0: works on ARM_NEON

* q6_0: dequantize works on Metal, but not vector dot product

* q6_0: it now works on Metal

Outperforms q5_0 by a significant margin. E.g.
| model                          |       size |     params | backend    | ngl | threads |          test |              t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | ------: | ------------: | ---------------: |
| llama 8B Q6_0                  |   6.08 GiB |     8.03 B | Metal      | 100 |       4 |         tg128 |     44.02 ± 0.08 |
| llama 8B Q5_0                  |   5.21 GiB |     8.03 B | Metal      | 100 |       4 |         tg128 |     40.13 ± 0.12 |
| llama 8B Q6_0                  |   6.08 GiB |     8.03 B | Metal      | 100 |       4 |         pp512 |    500.55 ± 0.32 |
| llama 8B Q5_0                  |   5.21 GiB |     8.03 B | Metal      | 100 |       4 |         pp512 |    448.02 ± 0.27 |

* q6_0: can now be used for kv-cache on Metal

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-10-02 15:22:13 +03:00
Kawrakow
6dec4af4b6 Adding ability to have meta data per tensor row (#61)
* POC: per row scale

This is a POC how to work around opinionated ggml to
have scales per row rather than per block.
Only implemened for Zen4 and only for iq2_tn.

* POC per row scale: iq2_tn on NEON

* POC per row scale: iq2_tn on Metal

* Per row scale Metal templates

* iq1_tn: shrink to 1.625 bpw (NEON and Metal)

* POC per row scale: CUDA

* POC per row scale: add CUDA TODOs

There are two places in ggml-cuda.cu left where it is assumed
that type_size * n_per_row / block_size is the way to compute
and handle row sizes. This does not affect simple usage,
but will lead to issues when tensors are split between GPUs.

* Per row scales - CUDA

The only place left where there are unnecessary assumptions being made
is in the Flash Attention code. As we are not using any quants that
use per row scales for quantized KV cache, it should be OK for now.

* Update IQ1_TN and IQ2_TN bpw shown to user

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-27 08:16:06 +03:00
Kawrakow
8c86231f93 Adding IQ1_TN - 1.6875 bpw for TriLM ternary models (#44)
* Adding iq1_tn - 1.6875 bpw for TriLM ternary models

* iq1_tn: NEON

* iq1_tn: faster NEON

* iq2_bn: improve performance on NEON

We now get TG-128 = 100 t/s for Bitnet-3B-1.58b!

* iq1_tn: improve AVX2

PP-512 goes to 533 t/s up from 455.
TG-128 @ 2 threads goes to 16.6 t/s up from 14.2.
However, we seem to have a bottleneck somewhere as
TG saturates at 8 threads.

* iq1_tn: improve Zen4

PP-512 goes to 485 t/s up from 352. With FA we get 545 t/s up from 380.
TG-128 @ 1 thread goes to 12.4 t/s up from 10.4.
However, we seem to have a bottleneck somewhere as
TG saturates at 8 threads.

* iq2_bn: improve on Zen4

We now get PP-512 = 614 t/s up from 542 t/s

* iq2_bn: improve AVX2 implementation

We now get PP-512 = 753 t/s up from 680 t/s.

* Remove unnecessary barrier in ggml_compute_forward_mul_mat

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-09 14:56:34 +03:00
Kawrakow
7b1b2b2c06 Zen4 Flash Attention - bf16 support (#38)
* Zen4 Flash Attnetion: WIP bf16

* Zen4 Flash Attnetion: bf16 seems to be working

* Zen4 Flash Attnetion: improving bf16

* Zen4 Flash Attnetion: improving bf16

It is better (slightly faster) to first convert Q
to bf16 before processing each block of q_step rows.
This requires D*q_step*sizeof(bf16) bytes, so at
most 4 kb for the head sizes we support, so we can
just allocate on the stack instead of reserving and
passing a work buffer in ggml.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-09-05 07:46:47 +03:00
Kawrakow
d259a50ca6 Fused soft cap and SIMD-ified GeLU (#9)
* Softcap: WIP

Fuses scale + tanh + scale as used for softcaping in some
models.

Just CPU for now. ~1.4% for PP-512 on Gemma2-9b, no effect on TG.

Somewhat surprisingly the improvement does not increase as I
go to longer contexts. Gemma2 does softcap on K*Q, which grows
quadratically with context length, so I would have thought
the benefit from fusing scale, tanh, scale would increase.
But no, no luck.

* softcap: CUDA

* softcap: CUDA

~1% speedup for Gemma2-9b

* softcap: Metal and NEON

About 1% speedup.

* Simdified gelu

Gives ~1% speedup for Gemma2-9b prompt processing on AVX512/AVX2.
It looks like the gelu operation is memory bound on my CPU's
after SIMD-ifying it. By not using the 128 kb gelu lookup table
we gain a small advantage.
On the M2-Max the lookup table is slightly faster than the SIMD
version, so left the lookup table for ARM_NEON.

* softcap, tanh: avoid NaNs for large arguments (AVX2, AVX512)

Not that I have encountered this in practice, but just to be sure.
This does it for AVX512 and AVX2, still need a guard for ARM_NEON.

* llama-bench: add ability to turn off warmup runs

So we don't need to wait forever on, e.g., benchmarks involving
long contexts.

* softcap, tanh: avoid NaNs for large arguments (NEON)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-20 17:15:47 +03:00
Kawrakow
5652100afc quantize_stats: print rmse and max error as fraction of <x> (#21)
This allows for a better comparison between different models
or different tensors of the same model where the magnitude of
the model weights may differ.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-19 13:49:28 +03:00
Kawrakow
8f43e55103 Merge mainline - Aug 12 2024 (#17)
* Merge mainline

* Fix after merge

* Remove CI check

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-12 15:14:32 +02:00
Iwan Kawrakow
a9b3f4a54b iq6_k: WIP (quantize/dequantize) 2024-08-09 16:00:31 +02:00
Kawrakow
a9f302ebe2 Adding IQ2_TN for use with ternary models (#13)
* iq2_tn: TriLM specific 2.0625 bpw quantization

Quantize/dequantize/scale dot product.

I get 46 t/s for the TriLM-3.9B with any SIMD!
Finally a compiler doing a decent job auto-vectorizing the
scalar implementation.

* iq2_tn: AVX512

Just reusing the k-quants template gets us to PP-512 = 376 t/s,
TG-128 = 47.6 t/s for TriLM-3.9B.

* iq2_tn: AVX512

With this tweak we get to PP-512 = 431 t/s.

* iq2_tn: AVX512

With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads.
At 4 threads we saturate at 48.41 t/s, and then performance slowly
degrades with increasing number of threads.

* iq2_tn: AVX2

PP512 = 440 t/s on the Ryzen-5975WX.
We should be able to do better.

* iq2_tn: initial NEON version

* iq2_tn: NEON

For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s,
TG-128 = 75.5 t/s. This is in line with what we have for
iq2_bn ant 3.3B Bitnet.

* iq2_tn: Metal

For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s,
TG-128 = 98.5 t/s.

* iq2_tn: CUDA

For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s,
TG-128 = 299.2 t/s.

* iq2_tn: AVX2 PP improvement

We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX.
We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn.
Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would
expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something
that is not quite optimal in iq2_tn.

* iq2_tn: small NEON improvement

For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-07 07:56:09 +02:00
Iwan Kawrakow
b409c15363 q2_K: allow it to detect ternary nets and quantize accordingly 2024-08-05 11:39:10 +02:00
Iwan Kawrakow
4f237d44f6 iq3_k: Basics
Quantize/dequantize, CUDA dequantize.
PPL of LLaMA-3.1-8B is better than iq3_s and iq3_m.
2024-08-01 09:38:06 +02:00
Iwan Kawrakow
5d341757bc iq5_k: Basics
Quantize/dequantize, CUDA dequantize
2024-08-01 09:38:06 +02:00
Iwan Kawrakow
c85e139c68 iq2_k: Basics
Quantize/dequantize, CUDA deqantize, AVX512 iqk_mul_mat.
2024-08-01 09:38:06 +02:00
Kawrakow
291066e6df IQ4_K: SOTA 4-bit quantization (#6)
* iq4_k: basics

* quantize/dequantize works
* CUDA dequantize works and one can run PPL calcs. I get
  PPL = 6.5258 for LlaMA-3.1-8B, which is 1.77% above fp16.
  In comparison, q4_K_S (same size) is 2.88% above fp16.
* TG on CUDA does not work. Johannes has changed the way i-quant dot
  products are done, so need to sort out what he had in mind
* iqk_mul_mat is not implemented.

* iq4_k: TG now works on CUDA

* iq4_k: AVX512 implementation

For LLaMA-3.1-8B we get PP-512 = 182.6 t/s, TG-128 = 13.6 t/s,
so almost the same as q4_K_S.

* iq4_k: AVX2 implementation

For LLaMA-3.1-8B we get PP-512 = 203.1 t/s, TG-128 = 12.9 t/s
on the Ryzen-5975X.

* iq4_k: NEON implementation

For LLaMA-3.1-8B we get PP-512 = 60.7 t/s, TG-128 = 25.0 t/s
on the M2-Max. TG is on par with q4_K_S, PP is ~10% slower.

* iq4_k: Metal implementation

For LLaMA-3.1-8B we get PP-512 = 445 t/s, TG-128 = 46.3 t/s
on a 30-core M2-Max GPU. This is to be compared with (currently)
PP-512 = 460 t/s, TG-128 = 51 t/s for q4_K_S.

* iq4_k: scalar dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-07-28 12:11:59 +02:00
Kawrakow
154e0d75fc Merge mainline llama.cpp (#3)
* Merging mainline - WIP

* Merging mainline - WIP

AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.

* Merging mainline - fix Metal

* Remove check

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-07-27 07:55:01 +02:00
Iwan Kawrakow
770f3585c2 Add copyright notices
Only on the files where I have contributed in a significant way,
or the files I wrote myself.
2024-07-24 20:11:42 +03:00
Iwan Kawrakow
0a3a2c4cd4 imatrix: be able to specify the name of the output tensor
For some models the same tensor is used for token embeddings and
output. This tensor tends to be named token_embedding.weight rather
than output.weight, which prevernts us from collecting imatrix data
for this tensor. With this commit we can tell the name of the
output tensor to the imatrix tool.
2024-06-26 17:38:18 +03:00
Iwan Kawrakow
707d087927 Bitnet: tiny bity faster 1.625 bpw variant on Metal
We get 70.7 t/s for TG-128 vs 69.5 t/s before.
2024-06-24 16:42:30 +02:00
Iwan Kawrakow
f6863cfa1b bitnet: add 2 bpw quantization
The scalar dot product already chieves 37 t/s for TG!
2024-06-22 12:02:51 +03:00
Iwan Kawrakow
0f53bc30bb bitnet: CUDA, scalar, AVX2 2024-06-22 12:02:51 +03:00
Douglas Hanley
80ea089d77 llama : allow pooled embeddings on any model (#7477)
* create append_pooling operation; allow to specify attention_type; add last token pooling; update examples

* find result_norm/result_embd tensors properly; update output allocation logic

* only use embd output for pooling_type NONE

* get rid of old causal_attn accessor

* take out attention_type; add in llama_set_embeddings

* bypass logits when doing non-NONE pooling
2024-06-21 08:38:22 +03:00
Shuichi Tsutsumi
0e64591e82 swiftui : enable stream updating (#7754) 2024-06-21 08:30:58 +03:00
luoyu-intel
de391e4c80 [SYCL] Fix windows build and inference (#8003)
* add sycl preset

* fix debug link error. fix windows crash

* update README
2024-06-20 21:19:05 +08:00
sasha0552
ba58993152 server : fix smart slot selection (#8020) 2024-06-20 09:57:10 +10:00
Sigbjørn Skjæret
91c188d6c2 Only use FIM middle token if it exists (#7648)
* Only use FIM middle if it exists

* Only use FIM middle if it exists
2024-06-18 22:19:45 +10:00
Calvin Laurenson
43b35e38ba Add support for sqrt on CUDA (#7953)
* cuda sqrt support

* enable cuda in pca

* fix comments in pca

* add test

* add sqrt to ggml_backend_cuda_supports_op

* fix test

* new line

* Use F32 sqrtf instead of F64 sqrt

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-06-17 00:23:04 +02:00
Xuan Son Nguyen
0c7b3595b9 Add cvector-generator example (#7514)
* add control-vector-generator

* calc diff

* add comments

* proof-of-concept stdlib implementation

Implements PCA and file writing using mostly standard libraries. The output is recognized as a functional control vector, but outputs gibberish.

* param parsing, refactor, comments

Added basic command-line parameters for outfile and one each positive/negative prompt.

Refactored some messy code in PCA computation and GGUF exporting.

Left a bunch of comments regarding further work needed.

* example template completions

Implements an example template set built from the positive/negative prompts like the control vector Python implementation.

* add multi prompts, multi-thread for PCA

* fix mem error

* add debugs

* fix matrix transpose multiplication

you have got to be kidding me

* preliminary template/multiprompt support

model is running out of context and that ought to be fixed (segfaulting) but other than that it looks goodish

* fix zero output & param parsing, functional templating

fixed a bug where the output file had no tensor data/was all zero

fixed a bug where single hyphen flags were not being correctly parsed

implements creation of templated prompts from input (still need to adapt based on model)

* fix square_diff matmul index range and CRLF->LF line endings

fixed a logic error where square_diff would not multiply all rows

fixed a formatting error where the provided completions.txt had CRLF line endings

* add command-line args for num threads, num completions file lines, always reload model

refactored a few things and did what the commit message says on the tin

* code aestheticization

* fix compiler warnings

* in-series multithreading for prompt embedding?

added commented-out code to attempt to start implementing mutlithreading for embedding in main

* remove unnecessary multithreading

* interim fix memory leak

* translated everything but PCA (I think)

* tentatively translate the rest

* fix ggml errors and make new ones

at least it compiles and runs

* fix cb_eval

* temporary commit while I move dev environments

it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent

* update debug statements

* pre-tokenize so we can allocate correct memory to ctx_diffs_wrapped

* update comments

* (wip) refactor

* clean up PCA ggml implementation

* fix shape of v_diff_original

* add n_batch for pca

* working version

* remember to copy back the last_eigenvector

* fix n_completions

* bring back n_completions

* default n_pca_batch to 20

* fix macos build

* add to makefile all targets

* use ggml_format_name

* add readme

* fix .editorconfig

* use ggml_backend_tensor_copy

* attemp to fix compile problem on mac

* fix compile warn

* reuse allocr

* move param parser to common

* better error handling

* clean up a bit

* add print_usage

* shorten help msg

* beautify help msg

* escape prompt by default

* change compile target to llama-cvector-generator

* typo

* disable GPU for PCA

* code style

---------

Co-authored-by: Christian Zhou-Zheng <christianzhouzheng@gmail.com>
2024-06-15 18:53:40 +02:00
Radoslav Gerganov
e65bbf606c llama-bench : fix RPC indication (#7936)
Show "<backend_name>+RPC" when RPC offloading is used
2024-06-14 16:47:41 +03:00
slaren
f578b86b21 move BLAS to a separate backend (#6210)
* move BLAS to a separate backend

* rename GGML_USE_OPENBLAS to GGML_USE_BLAS

* alloc : reuse same buffer when the same buffer type if used multiple times

* set number of threads automatically for openblas and blis

* sched : print assignments when GGML_SCHED_DEBUG env variable is set

* sched : allow ops with weights on an incompatible buffer type

This will cause the weight to be copied to a backend that supports the
op, which is very costly. The weight should have been stored in a buffer
of a backend that can run the op, but llama.cpp cannot do this
automatically at the moment.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-13 03:11:35 +02:00
Olivier Chafik
1c641e6aac build: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809)
* `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew

* server: update refs -> llama-server

gitignore llama-server

* server: simplify nix package

* main: update refs -> llama

fix examples/main ref

* main/server: fix targets

* update more names

* Update build.yml

* rm accidentally checked in bins

* update straggling refs

* Update .gitignore

* Update server-llm.sh

* main: target name -> llama-cli

* Prefix all example bins w/ llama-

* fix main refs

* rename {main->llama}-cmake-pkg binary

* prefix more cmake targets w/ llama-

* add/fix gbnf-validator subfolder to cmake

* sort cmake example subdirs

* rm bin files

* fix llama-lookup-* Makefile rules

* gitignore /llama-*

* rename Dockerfiles

* rename llama|main -> llama-cli; consistent RPM bin prefixes

* fix some missing -cli suffixes

* rename dockerfile w/ llama-cli

* rename(make): llama-baby-llama

* update dockerfile refs

* more llama-cli(.exe)

* fix test-eval-callback

* rename: llama-cli-cmake-pkg(.exe)

* address gbnf-validator unused fread warning (switched to C++ / ifstream)

* add two missing llama- prefixes

* Updating docs for eval-callback binary to use new `llama-` prefix.

* Updating a few lingering doc references for rename of main to llama-cli

* Updating `run-with-preset.py` to use new binary names.
Updating docs around `perplexity` binary rename.

* Updating documentation references for lookup-merge and export-lora

* Updating two small `main` references missed earlier in the finetune docs.

* Update apps.nix

* update grammar/README.md w/ new llama-* names

* update llama-rpc-server bin name + doc

* Revert "update llama-rpc-server bin name + doc"

This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930.

* add hot topic notice to README.md

* Update README.md

* Update README.md

* rename gguf-split & quantize bins refs in **/tests.sh

---------

Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-13 00:41:52 +01:00
Georgi Gerganov
704a35b183 server : restore numeric prompts (#7883) 2024-06-12 14:42:29 +03:00
Johannes Gäßler
148995e5e5 llama-bench: more compact markdown tables (#7879) 2024-06-11 14:45:40 +02:00
Olivier Chafik
b61eb9644d json: refine constraint for whitespace to avoid runaways yet allow pretty print (#7866) 2024-06-11 02:22:57 +01:00
Olivier Chafik
396b18dfec json: document schema conversion in GBNF readme, align manual grammar examples & converters (#7841)
* json: fix char pattern in grammar converters

* json: prevent number precision & whitespace runaways in example grammars

* json: add doc to grammar readme
2024-06-11 01:00:30 +01:00
Georgi Gerganov
c28a83902c examples : remove --instruct remnants (#7846) 2024-06-10 15:00:15 +03:00
Georgi Gerganov
d9da0e4986 server : improve "prompt" handling (#7847) 2024-06-10 14:59:55 +03:00
Georgi Gerganov
e95beeb1fc imatrix : handle partial entries (#7833) 2024-06-09 20:19:35 +03:00
mgroeber9110
3e2ee44315 server: do not remove whitespace at the start of a completion chunk (#7830) 2024-06-09 20:50:35 +10:00
slaren
fe1e3917cf Revert "[SYCL] Update rpc-server.cpp to include SYCL backend (#7682)" (#7808)
This reverts commit 9422c5e34b.
2024-06-09 01:43:39 +02:00
sasha0552
7a16ce7db2 server : smart slot selection using Longest Common Prefix (#7728)
* server : Smart selection of available slot using Longest Common Substring

* add usage

* remove trailing whitespaces

* Use Longest Common Prefix (LCP) instead of LCS

* Rename argument
2024-06-08 10:50:31 +03:00
Christian Zhou-Zheng
c00fad71e5 gguf-split : change binary multi-byte units to decimal (#7803) 2024-06-07 15:56:01 +03:00
Johannes Gäßler
7027b27d76 server: update cache_prompt documentation [no ci] (#7745) 2024-06-07 11:15:49 +02:00
woodx
a5cabd7649 server : do not get prompt in infill mode (#7286)
* avoid to get prompt in infill mode and embedding mode

* remove embedding mode

* refactor format

---------

Co-authored-by: wudexiang <wudexiang@bytedance.com>
2024-06-07 10:09:45 +03:00
slaren
c9ee7118d5 check for nans in imatrix and quantize (#7807)
* imatrix : detect nan/inf values

* quantize : check imatrix for nan/inf values
2024-06-07 09:01:29 +03:00
Georgi Gerganov
f83351f9a6 imatrix : migrate to gpt_params (#7771)
* imatrix : migrate to gpt_params

ggml-ci

* imatrix : add --save-frequency cli arg

* common : fix --no-ppl
2024-06-06 16:30:58 +03:00
Olivier Chafik
55b2d0849d grammars: x{min,max} repetition operator (#6640)
* grammars: x{min,max} repetition operator + tweak +/*/? to avoid duplication of original over alternates

* grammars: handle `x{n}` and fix `x{n,n}`

* grammars: document new repetition operators

* grammars: uniform use of int for min & max

* grammars: refactor parser test

* grammar: parsing tests w/ natural pretty print of updated expectations

* grammars: much prettier print of expectations (+ TEST_GRAMMAR_PARSER_PRINT_ALL=1 to force all)

* grammars: improve test pretty print again

* grammars: pretty print rules and chars

* grammars: fix copy rule skipping

* grammars: disallow `a{,}` (not allowed in regexps)

* Update common/grammar-parser.cpp

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* grammars: fix copy rule skipping (again) & display of expectations

* grammars: more test cases

* grammars: update reps parsing to bring ? / * / + closer to before

* json: use new GBNF repetitions{m,n} syntax

* grammars: update performance gotchas w/ repetition advice

* Update examples/json_schema_to_grammar.py

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* Update examples/server/public/json-schema-to-grammar.mjs

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* grammars: comment on rule repetitions

* grammars: ensure unambiguous number alternatives

* grammar: nit typo switched error msgs

* grammar: nit numbering in comment

* json: update numeric rule to be unambiguous

* Apply suggestions from code review

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* Update examples/server/public/json-schema-to-grammar.mjs

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* json: fix integral-part

* grammar: add repetition tests

---------

Co-authored-by: Clint Herron <hanclinto@gmail.com>
2024-06-06 10:07:06 +01:00
Georgi Gerganov
2b3389677a ggml : refactor rope norm/neox (#7634)
* ggml : unify rope norm/neox (CPU)

* ggml : fix compile warning

* ggml : remove GLM rope mode

ggml-ci

* metal : better rope implementation

ggml-ci

* cuda : better rope implementation

ggml-ci

* naming : n_orig_ctx -> n_ctx_orig

ggml-ci

* dev : add reminders to update backends

ggml-ci

* vulkan : fix ggml_rope_ext() usage

* cuda : fix array size + indents

ggml-ci
2024-06-05 11:29:20 +03:00
arch-btw
9973e81c5c readme : remove -ins (#7759)
-ins and --instruct were moved in https://github.com/ggerganov/llama.cpp/pull/7675

I have adjusted the README accordingly.
There was no trace of --chatml in the README.
2024-06-05 09:40:49 +03:00
Georgi Gerganov
1442677f92 common : refactor cli arg parsing (#7675)
* common : gpt_params_parse do not print usage

* common : rework usage print (wip)

* common : valign

* common : rework print_usage

* infill : remove cfg support

* common : reorder args

* server : deduplicate parameters

ggml-ci

* common : add missing header

ggml-ci

* common : remote --random-prompt usages

ggml-ci

* examples : migrate to gpt_params

ggml-ci

* batched-bench : migrate to gpt_params

* retrieval : migrate to gpt_params

* common : change defaults for escape and n_ctx

* common : remove chatml and instruct params

ggml-ci

* common : passkey use gpt_params
2024-06-04 21:23:39 +03:00
Georgi Gerganov
554c247caf ggml : remove OpenCL (#7735)
ggml-ci
2024-06-04 21:23:20 +03:00