* Experiments for 2.6875 bpw quants
At least according to rmse, this is significantly better than
q2_K, while using only 1/16 more bits per weight.
* iq2_kl: basics
* iq2_kl: CUDA dequantize
* iq2_kl: small improvement in PPL
Also check the two neighbouring values for the block scale
and use the one that minimizes RMSE.
* iq2_kl: MMQ
Quite good: PP-512(L3-8B) = 8472 t/s.
* iq2_kl: MMVQ
We get PP-128(L3-8B) = 162 t/s.
Which means that this is not quite as good as it should be as
(almost) same bpq q2_K is at 170 t/s.
* iq2_kl: Zen4 GEMM/GEMV
Not particularly fast. I may need to think about rearranging the bits.
* iq2_kl: better Zen4
* iq2_kl: convert/repack to q8_k_r8 (AVX2)
* iq2_kl: AVX2 GEMM/GEMV
* iq2_kl: WIP NEON
The compiler started crashing!!!
* iq2_kl: NEON
Had to work around a compiler crash when using vzip2q_u8 using
vqtbl2q_u8.
* iq2_kl: convert/repack to q8_k_r8 (NEON)
* iq2_kl: Metal dequantize
* iq2_kl: Metal GEMV - pretty slow
* iq2_kl: Metal GEMV - slightly better (40 t/s -> 44.5 t/s)
* iq2_kl: Metal GEMV - slightly better (44.5 t/s -> 46.5 t/s)
* iq2_kl: Metal GEMV - slightly better (46.5 t/s -> 47.2 t/s)
* iq2_kl: slightly better Metal dequantize
PP-512 goes to 476 t/s up from 466 t/s.
* iq2_kl: slightly better Metal dequantize
PP-512 goes to 492 t/s up from 476 t/s.
* Add iq2_kl to constants.py
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* WIP
* WIP
* WIP
* Testing Trellis quantization
Using 12 bits per 8 weights I get a better rmse than
iq2_xxs. I still need to see how quantizing the group-of-8
scales will affect accuracy. By AVX2 SIMDifying the search
for the best code, LLaMA-3.1-8B gets quantized in 130 seconds
on the Ryzen-7950X CPU - sluggish but still acceptable.
* Testing Trellis quantization: 4-bit quantized block scales
rmse increases by just 3%, so this is beating iq2_xss in terms
of rmse at the same 2.0625 bpw.
* Testing Trellis quantization: playing with scales and generators
* iq2_kt: quantize / dequantize
I now see that I was comparing apples to oranges:
iq2_xxs was using a weight of sigma^2/4 + x^2, while
the Trellis approach wasn't (weight = 1). Once I use the same weight,
iq2_kt is actually slightly worse than iq2_xxs in terms
of rmse, so does not look promising at this point.
Also, once each group of 8 Trellis values no longer has a
constant sum(q^2) that we can precompute, quantization
becomes significantly slower (476 seconds for LLaMA-3.1-8B).
* iq2_kt: CUDA dequantize
so we can run perplexity calcs.
As already indicated by rmse, the 2-bit trellis approach is
quite a bit worse than iq2_xxs.
* WIP
* WIP
* WIP - try larger blocks
With blocks of 32 and 16 bits per groups of 8 the brute force
seach becomes prohibitive in terms of CPU time (30+ minutes
for 8B LLaMA after SIMDifying with AVX2). The trick is to
group the points in clusters, find the nearest cluster,
and only search within the cluster.
* iq2_kt - this is better
Using blocks of 32 and 16 bits per group of 8 weights
it beats iq2_xxs in terms of PPL by a significant margin.
It is 0.0625 bpw larger, but even if we go to 15 bits per
group od 8 (so 0.0625 bpw less than iq2_xxs), PPL is still
lower.
* iq2_kt - even better
Re-quantize after determining block scales
(at the epxense of much longer quantization time).
* iq2_kt: CUDA dot product
Implemented as DMMV.
Very slow - just 81 t/s for LLaMA-3.1-8B.
Then again, Q2_K_S with forced to use DMMV only
gets 112 t/s vs 145 t/s via MMVQ. My memory is that
when the DMMV kernels were properly maintained/used,
DMMV was about on par with MMVQ for k-quants on my GPU.
* iq2_kt: very slightly faster CUDA dot product
* iq2_kt: f16 CUDA dot product
We arrive at 112 t/s.
* iq2_kt: faster f16 CUDA dot product
We arrive at 139 t/s (no FA), and 149 t/s (FA).
My RTX-4080 is ~20% slower than the RTX-6000 quoted in the
QTIP repository, so with FA (which I'm sure they also used)
we are at around ~180 t/s on their GPU, so almost matching
their performance.
* iq2_kt: faster f16 CUDA dot product
We arrive at 146 t/s (no FA), and 158 t/s (FA).
This is measured for LLaMA-3.1-8B with output.weight
left as f16.
* Minor
* Adding iq3_kt
3.125 bpw. So far does not look good on the PPL vs bpw plot.
* Forgotten change
* WIP
* WIP
* iq3_kt WIP: slowly improving
PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.8322, which is
starting to be competitive/slightly better than other quants.
* WIP
* iq3_kt WIP: slowly improving
PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.7892
* iq3_kt WIP: slowly improving
PPL(LLaMA-3.1-8B-Instruct, 8192) is now 6.7689 after shrinking
by 0.015 bpw by using iq4_k instead of q5_k for attn_v.
* iq3_kt WIP: speed up quantization
Nearly 60% improvement of quantization speed by having the
points nelonging to a cluster copied to contiguous memory
during initialization, and then accessed sequantially while
searching for the closest point. LLaMA-3.1-8B now gets
quantized in ~150 seconds on the Ryzen-5975WX.
* iq3_kt speed up quantization
Same trick as last commit applied to iq2_kt. Here we get
an even larger speedup: quantization time on the Ryzen-5975WX
for LLaMA-3.1-8B drops to 195 seconds from 375 seconds!
* iq3_kt: CUDA dot product
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.2406
PPL(LLaMA-2-7B, 4096) = 6.4179
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.1642
PPL(LLaMA-2-7B, 4096) = 6.3920
* Adding iq4_kt - not competitive at this point
* WIP
* WIP
* iq4_kt: CUDA dot product
* iq4_kt: minor tweaks
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.1642
PPL(LLaMA-2-7B, 4096) = 6.3920
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 9.0297
PPL(LLaMA-2-7B, 4096) = 6.3913
Ah, quantization is faster too. About 20% faster.
* iq3_kt: small improvements and faster quantization
* iq2_kt: SOTA
We arrive at
PPL(LLaMA-3.1-8B-Instruct, 8192) = 8.9627
PPL(LLaMA-2-7B, 4096) = 6.3825
Quantization is faster too: ~200 seconds for LLaMA-3.1-8B
on Ryzen-5975WX.
* iq3_kt: small progress
* WIP
* iq4_kt: go to 4.0 bpw
15 bits per group of 4, plus 8 bit scales ifor blocks of 32.
This gives a slightly better PPL than iq4_kss.
* iq4_kt: very slightly better
at the expense of much longer quantization time.
* iq4_kt: failed attemt to adjust CUDA dot product
It was working for 4.125 bpw. But after changing to 4.0 bpw
there is something wrong and I don't see the bug.
* DRY
* DRY
* iq4_kt: CUDA dot product works
* DRY
* Report actual bpw
* Minor tweaks
* Checkpoint
Go to groups of 8 for iq3_kt. 2 x 8 = 16 bits for the magnitude
plus 1 bpw for the sign. It goves a visible improvement in the
PPL vs bpw plot, but that comes at the expense of much longer
quantization time (7.5 minutes for LLaMA-3.1-8B on the Ryzen-5975WX).
I also notices that the 3INST generator is not actually generating a
Gaussian distribution. But going to a better generator means
readjusting all the hyper-parameters, so leaving it for later.
* WIP for IQ2_KT
* WIP - working basic iq2_kt
* still super slow (0.17t/s eval)
* flatten 3inst iters + avx2 (0.3t/s eval)
* iq3_kt (0.3t/s eval) and renames
* wip buggy iq4_KT
* fix (0.22t/s eval)
* naming and remove unused fn
* cleanup
* more cleanup
* delete unused and noncompiling mmvq functions
* Some performance tweaks
* Slighty faster iq2_kt
* port Trellis struct to iq3_kt, iq4_kt
* oops untracked files
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq4_kss: WIP
* iq4_kss: CUDA dequantize works
So we can run perplexity. Sadly, the result does not look good
on the bpw vs quantization error plot.
* iq4_kss: slightly better quantization
* iq4_kss: another small quantization improvement
* iq4_kss: CUDA works
TG-128 performance is very decent with 131 t/s for LLaMA-3.1-8B.
In comparison, we have 123 t/s for q4_0 and 128 t/s for iq4_ks.
I.e., the reduced model size more than offsets the additional
bit fiddling required for iq4_kss.
* iq4_kss: new bit arrangement - CUDA and Zen4 work
Did not lose performance on CUDA. Zen4 is decent, but not great:
PP-512(LLaMA-3.1-8B) = 163 t/s.
TG-128 is of course better than other 4-bit quants due to smaller model size.
We get 14.5 t/s @ 8 threads.
* iq4_kss: ARM_NEON. Predictably very slow
* iq4_kss: Metal
PP is not too bad - just 10% slower than q4_0.
But TG is 30% slower, i.e., predictably bad.
* iq4_kss: somewhat faster Metal dot product
45.75 t/s -> 48.75 t/s.
Still 22% slower than q4_0
* iq4_kss: AVX2
Bad, but better than I expected.
PP-512(LLaMA-3.1-8B) = 167 t/s on the Ryzen-5950X.
I.e., with 32 AVX2 threads we get the performance of
16 Zen4 threads.
* iq4_kss: very slightly faster Metal dot product
48.7 t/s -> 49.3 t/s
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This allows for a better comparison between different models
or different tensors of the same model where the magnitude of
the model weights may differ.
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* iq3_xxs: quantize/dequantize
RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.
* iq3_xxs: CUDA dequantize works
* iq2_xxs: tuning quantization
* iq3_xxs: starting to look better
PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717
This is better than Q3_K_XS, with a 5% reduction in quantized model
size.
* iq3_xxs: CUDA dot product
We have
PP-512: 5891 t/s
TG-128: 143.9 t/s
* iq3_xxs: scalar and AVX2 dot products
* iq3_xxs: ARM_NEON and Metal
Metal performance is decent, ARM_NEON is pathetic
* iq3_xxs: slightly better grid points
* Faster iq3_xxs and iq2_xs dot products on CUDA
* iq3_xxs: add some quant mix
* iq3_xxs: fix failing quantization test
Dot product still fails. Is this real?
* iq3_xxs: hopefully fix ROCm
* iq3_xxs: failing tests
This time the dot product accuracy did find an actual bug
in the AVX2 implementation.
* Add IQ3_XXS to test-backend-ops
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* cmake : fix build when .git does not exist
* cmake : simplify BUILD_INFO target
* cmake : add missing dependencies on BUILD_INFO
* build : link against build info instead of compiling against it
* zig : make build info a .cpp source instead of a header
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* cmake : revert change to CMP0115
---------
Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
* llama.cpp : split llama_context_params into model and context params
ggml-ci
* fix metal build
* fix freq_base/scale default to model value
* llama-bench : keep the same model between tests when possible
* move n_threads to llama_context_params, add n_threads_batch
* fix mpi build
* remove kv_size(), cuda scratch fixes
* remove low-vram option
* add n_threads_batch to system info, refactor to get_system_info()
* add documentation about --threads-batch to the READMEs
* llama-bench fix
* main : fix rope freq/scale warning
* llama.cpp : add llama_get_model
common : add llama_tokenize from model
* remove duplicated ctx/model functions
ggml-ci
* cuda : print total VRAM used
* Generalize quantize_fns for simpler FP16 handling
* Remove call to ggml_cuda_mul_mat_get_wsize
* ci : disable FMA for mac os actions
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : make model stateless and context stateful
* llama : minor cleanup
* llama : update internal API declaration
* Apply suggestions from code review
fix style
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Missing model memory release
* Fix style
* Add deprecated warning for public API function llama_init_from_file
* Update public API use cases: move away from deprecated llama_init_from_file
* Deprecate public API function llama_apply_lora_from_file
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Starting to add k-quantization to ggml
I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.
* Adding Q3_K and Q8_K (de)-quantization
* Q3_K now working on CUDA and AVX2/scalar
CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).
* Some improvement for Q3_K on CUDA
It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.
* Some more CUDA optimizations for Q3_K
Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.
* Adding Q4_K - scalar, AVX2, CUDA
Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).
* Adding Q6_K - scalar, AVX2, CUDA
Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).
* Adding Q5_K - scalar, AVX2, CUDA
Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.
* Per convention, all QX_K quantizations use Q5_K for output.weight
* Adding quantization mixes
* Quantization mixes: didn't quite get what I wanted in the last commit
* Q4_K dot product for ARM_NEON
* Q6_K dot product for ARM_NEON
* Q5_K dot product for ARM_NEON
* Adding Q3_K dot for ARM_NEON
It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.
* A very slightly faster ARM_NEON Q3_K dot
* Adding Q2_K - just CUDA for now
Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.
* Adding scalar and AVX2 Q2_K dot
* Adding ARM_NEON Q2_K dot
About the same performance as Q4_K.
* A slightly faster ARM_NEON Q2_K dot
Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.
* Fixed bug in Q2_K CUDA dot product kernel
Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.
In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).
* Don't print zeros/NaNs when no count histogram has been collected
* A 10% faster CUDA vector dot kernel for Q3_K
Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.
* A slightly daster Q4_K AVX2 dot product
For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.
* A slightly faster ARM_NEON A4_K dot product
* Minor
* Fix quantization error test
We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.
* Fix docker build
I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.
* Added forgotten ggml.o dependence on k_quants.h to the Makefile
* Had unintentionally committed the Makefile with -Ofast enabled
* ggml : rename k_quants -> ggml-quants-k, use lowercase in code
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add git-based build information for better issue tracking
* macOS fix
* "build (hash)" and "CMAKE_SOURCE_DIR" changes
* Redo "CMAKE_CURRENT_SOURCE_DIR" and clearer build messages
* Fix conditional dependency on missing target
* Broke out build-info.cmake, added find_package fallback, and added build into to all examples, added dependencies to Makefile
* 4 space indenting for cmake, attempt to clean up my mess in Makefile
* Short hash, less fancy Makefile, and don't modify build-info.h if it wouldn't change it
* Multi-threading quantization.
Not much gain for simple quantizations, bit it will be important
for quantizations that require more CPU cycles.
* Multi-threading for quantize-stats
It now does the job in ~14 seconds on my Mac for
Q4_0, Q4_1 and Q4_2. Single-threaded it was taking
more than 2 minutes after adding the more elaborate
version of Q4_2.
* Reviewer comments
* Avoiding compiler confusion
After changing chunk_size to const int as suggested by
@ggerganov, clang and GCC starting to warn me that I don't
need to capture it in the lambda. So, I removed it from the
capture list. But that makes the MSVC build fail. So,
making it a constexpr to make every compiler happy.
* Still fighting with lambda captures in MSVC
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
- Support all three formats (ggml, ggmf, ggjt). (However, I didn't
include the hack needed to support GPT4All files without conversion.
Those can still be used after converting them with convert.py from my
other PR.)
- Support both mmap and read (mmap is used by default, but can be
disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
files or on platforms where mmap is not supported).
- Support multi-file models like before, but automatically determine the
number of parts rather than requiring `--n_parts`.
- Improve validation and error checking.
- Stop using the per-file type field (f16) entirely in favor of just
relying on the per-tensor type/size fields. This has no immediate
benefit, but makes it easier to experiment with different formats, and
should make it easier to support the new GPTQ-for-LLaMa models in the
future (I have some work in progress on that front).
- Support VirtualLock on Windows (using the same `--mlock` option as on
Unix).
- Indicate loading progress when using mmap + mlock. (Which led me
to the interesting observation that on my Linux machine, with a
warm file cache, mlock actually takes some time, whereas mmap
without mlock starts almost instantly...)
- To help implement this, move mlock support from ggml to the
loading code.
- madvise/PrefetchVirtualMemory support (based on #740)
- Switch from ifstream to the `fopen` family of functions to avoid
unnecessary copying and, when mmap is enabled, allow reusing the same
file descriptor for both metadata reads and mmap (whereas the existing
implementation opens the file a second time to mmap).
- Quantization now produces a single-file output even with multi-file
inputs (not really a feature as much as 'it was easier this way').
Implementation notes:
I tried to factor the code into more discrete pieces than before.
Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:
- Destructors to make it easier to ensure everything gets cleaned up.
- Exceptions. I don't even usually use exceptions when writing C++, and
I can remove them if desired... but here they make the loading code
much more succinct while still properly handling a variety of errors,
ranging from API calls failing to integer overflow and allocation
failure. The exceptions are converted to error codes at the
API boundary.)
Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
Command that calculates some statistics over the errors introduced by
quantization, like mean square error, max error and some percentile errors for layer
weights. Should be useful for testing quantization improvements.
Exposes some internal state from ggml and llama for testing