127 Commits

Author SHA1 Message Date
Kawrakow
1a4cfbcc53 Merge mainline - Aug 12 2024 (#17)
* Merge mainline

* Fix after merge

* Remove CI check

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-12 15:14:32 +02:00
Kawrakow
4b2c94618f iq6_k: WIP (quantize/dequantize) 2024-08-09 16:00:31 +02:00
Kawrakow
58a323f585 Adding IQ2_TN for use with ternary models (#13)
* iq2_tn: TriLM specific 2.0625 bpw quantization

Quantize/dequantize/scale dot product.

I get 46 t/s for the TriLM-3.9B with any SIMD!
Finally a compiler doing a decent job auto-vectorizing the
scalar implementation.

* iq2_tn: AVX512

Just reusing the k-quants template gets us to PP-512 = 376 t/s,
TG-128 = 47.6 t/s for TriLM-3.9B.

* iq2_tn: AVX512

With this tweak we get to PP-512 = 431 t/s.

* iq2_tn: AVX512

With this tweak we get TG-128 = 19.58 / 35.18 t/s for 1 / 2 threads.
At 4 threads we saturate at 48.41 t/s, and then performance slowly
degrades with increasing number of threads.

* iq2_tn: AVX2

PP512 = 440 t/s on the Ryzen-5975WX.
We should be able to do better.

* iq2_tn: initial NEON version

* iq2_tn: NEON

For TriLM-3.9B running on the M2-Max we get PP-512 = 193.5 t/s,
TG-128 = 75.5 t/s. This is in line with what we have for
iq2_bn ant 3.3B Bitnet.

* iq2_tn: Metal

For TriLM-3.9B on a 30-core M2-Max we get PP-512 = 890 t/s,
TG-128 = 98.5 t/s.

* iq2_tn: CUDA

For TriLM-3.9B running on RTX-4080 we get PP-512 = 9936 t/s,
TG-128 = 299.2 t/s.

* iq2_tn: AVX2 PP improvement

We now get PP-512 = 490.73 t/s for TriLM-3.9B on the Ryzen-5975WX.
We have PP-512 = 636.61 t/s for Bintnet-3B quantized with iq2_bn.
Bintnet-3B is actually 3.4B, TriLM-3.9B is 3.99B, so we would
expect 3.43/3.99 * 636 = 546 t/s, so it seems we still have something
that is not quite optimal in iq2_tn.

* iq2_tn: small NEON improvement

For TriLM-3.9B we now get PP-512 = 206.6 t/s and TG-128 = 76.4 t/s.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-08-07 07:56:09 +02:00
Kawrakow
695c7eef49 q2_K: allow it to detect ternary nets and quantize accordingly 2024-08-05 11:39:10 +02:00
Kawrakow
fb4cff3458 iq3_k: Basics
Quantize/dequantize, CUDA dequantize.
PPL of LLaMA-3.1-8B is better than iq3_s and iq3_m.
2024-08-01 09:38:06 +02:00
Kawrakow
e5cd93b4b7 iq5_k: Basics
Quantize/dequantize, CUDA dequantize
2024-08-01 09:38:06 +02:00
Kawrakow
3f7dad3000 iq2_k: Basics
Quantize/dequantize, CUDA deqantize, AVX512 iqk_mul_mat.
2024-08-01 09:38:06 +02:00
Kawrakow
007d2a56b3 IQ4_K: SOTA 4-bit quantization (#6)
* iq4_k: basics

* quantize/dequantize works
* CUDA dequantize works and one can run PPL calcs. I get
  PPL = 6.5258 for LlaMA-3.1-8B, which is 1.77% above fp16.
  In comparison, q4_K_S (same size) is 2.88% above fp16.
* TG on CUDA does not work. Johannes has changed the way i-quant dot
  products are done, so need to sort out what he had in mind
* iqk_mul_mat is not implemented.

* iq4_k: TG now works on CUDA

* iq4_k: AVX512 implementation

For LLaMA-3.1-8B we get PP-512 = 182.6 t/s, TG-128 = 13.6 t/s,
so almost the same as q4_K_S.

* iq4_k: AVX2 implementation

For LLaMA-3.1-8B we get PP-512 = 203.1 t/s, TG-128 = 12.9 t/s
on the Ryzen-5975X.

* iq4_k: NEON implementation

For LLaMA-3.1-8B we get PP-512 = 60.7 t/s, TG-128 = 25.0 t/s
on the M2-Max. TG is on par with q4_K_S, PP is ~10% slower.

* iq4_k: Metal implementation

For LLaMA-3.1-8B we get PP-512 = 445 t/s, TG-128 = 46.3 t/s
on a 30-core M2-Max GPU. This is to be compared with (currently)
PP-512 = 460 t/s, TG-128 = 51 t/s for q4_K_S.

* iq4_k: scalar dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-07-28 12:11:59 +02:00
Kawrakow
0ceeb11721 Merge mainline llama.cpp (#3)
* Merging mainline - WIP

* Merging mainline - WIP

AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.

* Merging mainline - fix Metal

* Remove check

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-07-27 07:55:01 +02:00
Kawrakow
8542b4f359 Bitnet: tiny bity faster 1.625 bpw variant on Metal
We get 70.7 t/s for TG-128 vs 69.5 t/s before.
2024-06-24 16:42:30 +02:00
Kawrakow
318899c8b7 bitnet: add 2 bpw quantization
The scalar dot product already chieves 37 t/s for TG!
2024-06-22 12:02:51 +03:00
Kawrakow
eecd48eab5 bitnet: CUDA, scalar, AVX2 2024-06-22 12:02:51 +03:00
Olivier Chafik
b267b997c5 build: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809)
* `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew

* server: update refs -> llama-server

gitignore llama-server

* server: simplify nix package

* main: update refs -> llama

fix examples/main ref

* main/server: fix targets

* update more names

* Update build.yml

* rm accidentally checked in bins

* update straggling refs

* Update .gitignore

* Update server-llm.sh

* main: target name -> llama-cli

* Prefix all example bins w/ llama-

* fix main refs

* rename {main->llama}-cmake-pkg binary

* prefix more cmake targets w/ llama-

* add/fix gbnf-validator subfolder to cmake

* sort cmake example subdirs

* rm bin files

* fix llama-lookup-* Makefile rules

* gitignore /llama-*

* rename Dockerfiles

* rename llama|main -> llama-cli; consistent RPM bin prefixes

* fix some missing -cli suffixes

* rename dockerfile w/ llama-cli

* rename(make): llama-baby-llama

* update dockerfile refs

* more llama-cli(.exe)

* fix test-eval-callback

* rename: llama-cli-cmake-pkg(.exe)

* address gbnf-validator unused fread warning (switched to C++ / ifstream)

* add two missing llama- prefixes

* Updating docs for eval-callback binary to use new `llama-` prefix.

* Updating a few lingering doc references for rename of main to llama-cli

* Updating `run-with-preset.py` to use new binary names.
Updating docs around `perplexity` binary rename.

* Updating documentation references for lookup-merge and export-lora

* Updating two small `main` references missed earlier in the finetune docs.

* Update apps.nix

* update grammar/README.md w/ new llama-* names

* update llama-rpc-server bin name + doc

* Revert "update llama-rpc-server bin name + doc"

This reverts commit e474ef1df481fd8936cd7d098e3065d7de378930.

* add hot topic notice to README.md

* Update README.md

* Update README.md

* rename gguf-split & quantize bins refs in **/tests.sh

---------

Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-13 00:41:52 +01:00
Georgi Gerganov
8822dcce8d common : refactor cli arg parsing (#7675)
* common : gpt_params_parse do not print usage

* common : rework usage print (wip)

* common : valign

* common : rework print_usage

* infill : remove cfg support

* common : reorder args

* server : deduplicate parameters

ggml-ci

* common : add missing header

ggml-ci

* common : remote --random-prompt usages

ggml-ci

* examples : migrate to gpt_params

ggml-ci

* batched-bench : migrate to gpt_params

* retrieval : migrate to gpt_params

* common : change defaults for escape and n_ctx

* common : remove chatml and instruct params

ggml-ci

* common : passkey use gpt_params
2024-06-04 21:23:39 +03:00
Georgi Gerganov
43b6515153 common : normalize naming style (#7462)
* common : normalize naming style

ggml-ci

* common : match declaration / definition order

* zig : try to fix build
2024-05-22 20:04:20 +03:00
Georgi Gerganov
8a5e27cbd7 tests : fix --keep_split -> --keep-split (#7374) 2024-05-20 08:55:09 +03:00
Fred Douglas
f43b1eb190 quantize : fix --keep-split check (#7374) 2024-05-19 19:37:04 +03:00
Vaibhav Srivastav
756bbb6560 doc: add references to hugging face GGUF-my-repo quantisation web tool. (#7288)
* chore: add references to the quantisation space.

* fix grammer lol.

* Update README.md

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Update README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-16 15:38:43 +10:00
Justine Tunney
8474c73a90 ggml : introduce bfloat16 support (#6412)
* Introduce bfloat16 support

Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───┐
    0b0000000000000000 brain16

This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───────────────────┐
    0b00000000000000000000000000000000 IEEE binary32

The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others

      ┌sign
      │
      │  ┌exponent
      │  │
      │  │    ┌mantissa
      │  │    │
      │┌─┴─┐┌─┴──────┐
    0b0000000000000000 IEEE binary16

This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16

* Remove GGML code that's not needed

* Minimize the GGML API surface area for BF16

* Remove bf16 luts

* Make the GGML header look nicer

* Fix documentation

* Apply ggerganov's fixes for test-backend-ops

* Add BF16 code for new ggml_validate_row_data() function
2024-05-08 09:30:09 +03:00
Pierrick Hymbert
ffc7d66851 quantize: add imatrix and dataset metadata in GGUF (#6658)
* imatrix: save the dataset file used in the output file

* llama: support kv overrides type string string

* common: factorize KV Overrides parsing between common and server

* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656

* llama: remove kv override str_value initialization as it does not compile on some toolchain

* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`

* quantize: add imatrix filename in KV

* llama: add llama_model_kv_override_free

* common: add llama_model_kv_override_free
common: free kv override if used after model loading

* llama: finally move the string KV override value to the stack

* llama : minor

* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.

Co-authored-by: slaren <slarengh@gmail.com>

* kv override: ensure string termination

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26 20:06:33 +02:00
Georgi Gerganov
4ce9087ea4 tests : minor bash stuff (#6902)
* tests : minor bash stuff

ggml-ci

* llama : fix build

ggml-ci

* tests : fix CUR_DIR -> ROOT_DIR

ggml-ci

* tests : fix fname

ggml-ci
2024-04-25 14:27:20 +03:00
jiez
1d00f348a3 quantize : add '--keep-split' to quantize model into shards (#6688)
* Implement '--keep-split' to quantize model into several shards

* Add test script

* Update examples/quantize/quantize.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Split model correctly even if tensor id is out-of-order

* Update llama_model_quantize_params

* Fix preci failures

---------

Co-authored-by: z5269887 <z5269887@unsw.edu.au>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-25 13:29:35 +03:00
Rene Leonhardt
28a569bc8e chore: Fix markdown warnings (#6625) 2024-04-12 10:52:36 +02:00
slaren
5d3839837b ggml : mul_mat_id use the same tensor for all the experts (#6387)
* ggml : update mul_mat_id to use the same tensor for all the experts

* update cuda

* minor

* update metal

* update test-backend-ops

* fix cuda

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update convert.py

* update convert-hf-to-gguf.py

* update convert.py for mixtral hf models

* Update convert-hf-to-gguf.py

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* cuda : support non-pow-2 number of experts

* allow quantize to work for split and merged experts models in the same way

* cleanup + disable mmap automatically with split tensors models

* update imatrix

* test-backend-ops : test qwen argsort

* update grok model loading

* llama : add merged experts tensors to the grok tensor map

* minor

* gguf : bump version

* fix quantizing of merged experts

* convert-hf-to-gguf.py : update grok (untested)

* make linter happy

* cuda/argsort : use shared memory instead of pool memory

* convert : fix grok tensor names

* metal : add support for non-pow-2 argsort

* llama : more loader cleanup, better error checking

* cuda : fix warning

* llama : still use mmap for loading old models, but copy the data to a host buffer

* add review note

* llama : remove ffn tensor counting + add sanity check

ggml-ci

* convert : fix handling of n_experts == None

ggml-ci

* imatrix : fix ncall counters

* llama : produce error if imatrix size does not match

* quantize : terminate on errors + trace logs

ggml-ci

* metal : pad shared memory to 16 bytes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 16:07:05 +03:00
Kawrakow
ab7258efcb IQ1_M: 1.75 bpw quantization (#6302)
* iq1_m: basics

* iq1_m: basics-2

* iq1_m: CUDA dequantize works

Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B.

* iq1_m: separate shifts for each group of 8 in a block

We get
PPL(LLaMA-v2-7B ) = 9.2810
PPL(LLaMA-v2-13B) = 6.8105

Not bad, but slightly higher than
  sqrt(PPL(IQ1_S) * PPL(IQ2_XXS))
which is the expected outcome given that IQ1_M is
halfway between IQ1_S and IQ2_XXS in terms of bpw.
From this, we would expect
 PPL = 9.14 for LLaMA-v2-7B
 PPL = 6.63 for LLaMA-v2-13B

* iq1_m: go to 3-bit scales

There is slight increase in PPL, but the 0.0625 bpw reduction
in size is totally worth it.

We now have
PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw
PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw
PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw

* iq1_m: scalar dot product

* iq1_m: AVX2 dot product

* iq1_m: very slightly faster AVX2 dot product

* iq1_m: ARM_NEON dot product

Works, but very slow (10.5 t/s)

* iq1_m: Metal - dequantize works, dot product does not

* iq1_m: Metal now works

About the same performance as iq1_s.

* iq1_m: minor

* iq1_m: checking pure iq1_m quantization

It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight
with Q4_K.

* iiq1_m: slightly faster ARM_NEON dot product

10.5 t/s -> 11.65 t/s

* iq1_m: faster ARM_NEON dot product

11.65 t/s -> 14.9 t/s

* iq1_m: another minor ARM_NEON dot product improvement

14.9 -> 15.0 t/s

* iq1_m: small PPL improvement via super-block scale adjustment

After quantizing block scales redo the super-block scale fit.

PPL(LLaMA-v2-7B ) = 9.3346
PPL(LLaMA-v2-13B) = 6.8419
PPL(LLaMA-v2-70B) = 4.8294
PPL(Mistral-7B  ) = 8.1624

* iq1_m: adapt to CUDA refactoring

* iq1_m: remove unused variable

We have progressed to warnings being errors.

* iq1_m: add to backend-ops tests

* iq1_m: fix Windows ARM

* iq1_m: use common definition of iq1m_scale_t

* cuda: assert -> NO_DEVICE_CODE

* iq1_M: PR comments

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 15:21:27 +01:00
Kawrakow
aa1647413e quantize : be able to override metadata by key (#6321)
* quantize: be able to override metadata by key

* minor : spacing

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26 14:09:30 +02:00
Kawrakow
26dbb0527b quantize: options for output and token embedding tensors qtype (#6239)
* quantize: be able to specify the output tensor type

* quantize: be able to specify the token embedding tensor type

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-22 20:47:14 +02:00
Kawrakow
a1260421bf IQ4_XS: a 4.25 bpw quantization (#5747)
* Try IQ4_NL with blocks of 64 - does not look good

* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32

* iq4_xs: CUDA works - 133.2 t/s

* iq4_xs: AVX2 dot product

* iq4_xs: ARM_NEON dot product

* iq4_nl: Metal implementation

As usual, Metal / Apple Silicon don't like my quants.

* iq3_xs: minor fix

* iq4_xs: shrink by using IQ3_S for attn_k and attn_q

* iq4_xs: revert using IQ3_S for attn_k and attn_v

PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.

* Fix CI

* iq4_xs: Added forgotten check for 256 divisibility

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-27 16:34:24 +02:00
Kawrakow
1e629318a7 Adding IQ2_S and IQ2_M to complete coverage of the 2-3 bit quantization range (#5721)
* Adding IQ2_S and IQ2_M as a single cumulative commit

* Update examples/quantize/quantize.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-26 18:28:38 +02:00
Kawrakow
0f87b60a76 IQ3_S: a much better alternative to Q3_K (#5676)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* Resurrecting iq3_xs

After all the experimentation, nothing was better than this.

* Minor PPL improvement via a block scale fudge factor

* Minor improvement via 3 neighbours

* iq3_xs: working scalar and AVX2 dot products

* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)

* iq3_xs: working Metal implementation

* Adding IQ3_M - IQ3_XS mix with mostly Q4_K

* iiq3_xs: a 3.4375 bpw variant

* iq3_xs: make CUDA work for new version

* iq3_xs: make scalar and AVX2 work for new version

* iq3_s: make ARM_NEON work with new version

* iq3_xs: make new version work on metal

Performance is very similar to Q3_K_S

* iq3_xs: tiny Metal speed improvement

* iq3_xs: tiny Metal speed improvement

* Fix stupid warning

* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS

* iq3_xs: rename to iq3_s

* iq3_s: make tests pass

* Move Q3_K_XS mix to 3.25 bpw

* Attempt to fix failing tests

* Another attempt to fix the Windows builds

* Attempt to fix ROCm

* ROCm again

* iq3_s: partial fix for QK_K = 64

* iq3_s: make it work on metal for QK_K = 64

Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.

* Will this fix ROCm?

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 16:23:52 +02:00
Kawrakow
0d012cc5d3 IQ4_NL: 4-bit non-linear quants with blocks of 32 (#5590)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* iq4_nl: Fix after merging with master

* iq4_nl: another fix after merging with master

* Use IQ4_NL instead of Q4_K when using k-quants is not possible

* Fix typo that makes several tests fail

* It was the ggml_vdotq thing missed inside the brackets

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-21 11:39:52 +02:00
Kawrakow
fa40433c9d 1.5 bit quantization (#5453)
* iq1_s: WIP basics

* iq1_s: CUDA is working

* iq1_s: scalar CPU dot product

* iq1_s: WIP AVX2 dot product - something is not right

* Fix tests

* Fix shadow warnings

* Fix after merge with latest master

* iq1_s: AVX2 finally works

* iq1_s: ARM_NEON dot product. Works, but not very fast

* iq1_s: better grid

* iq1_s: use IQ2_XXS for attn_output

At a cost of 0.04 extra bpw this gives a big improvement in PPL.

* iq1_s: Metal basics

Dequantize works, but not dot product

* iq1_s: Metal works, but quite slow

As usual, Apple Silicon does not like the code I write.

* iq1_s: Tests

* iq1_s: slightly faster dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-18 18:16:55 +02:00
bmwl
4bc5d852a2 ggml : add numa options (#5377)
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverted Makefile

* Fixed include

* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables

* removed trailing whitespace

* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverting Makefile

* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet

* Removing MIRROR_MODE code for this PR

* Removing last bit of MIRROR_MODE code for this PR

* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static

* Fixed lingering init_llama_backend() bool calls in tests and examples

* Remote enum llama_numa_strategies

* Revert bad merge with dynatemp flags

* add missing enum ggml_numa_strategies declaration and revert sync problem with master

* add missing enum ggml_numa_strategies declaration

* fixed ggml_init_numa variable

* Update ggml.h

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges

* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples

* Fix up some boolean vs enum comparisons

* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype

* Update ggml.h

Align enum values

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

Remove whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

align paremeters

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/server.cpp

remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/common.cpp

Remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example

* Update ggml.c

simplified return for platforms without NUMA support

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* removed redundant else from cli argument processing of --numa

* whitespace

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 11:31:07 +02:00
Michael Klimenko
1e8c6c465e refactor : switch to emplace_back to avoid extra object (#5291) 2024-02-03 13:23:37 +02:00
Kawrakow
ed93f53d40 SOTA 3-bit quants (#5196)
* iq3_xxs: quantize/dequantize

RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.

* iq3_xxs: CUDA dequantize works

* iq2_xxs: tuning quantization

* iq3_xxs: starting to look better

PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717

This is better than Q3_K_XS, with a 5% reduction in quantized model
size.

* iq3_xxs: CUDA dot product

We have
PP-512: 5891 t/s
TG-128: 143.9 t/s

* iq3_xxs: scalar and AVX2 dot products

* iq3_xxs: ARM_NEON and Metal

Metal performance is decent, ARM_NEON is pathetic

* iq3_xxs: slightly better grid points

* Faster iq3_xxs and iq2_xs dot products on CUDA

* iq3_xxs: add some quant mix

* iq3_xxs: fix failing quantization test

Dot product still fails. Is this real?

* iq3_xxs: hopefully fix ROCm

* iq3_xxs: failing tests

This time the dot product accuracy did find an actual bug
in the AVX2 implementation.

* Add IQ3_XXS to test-backend-ops

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 15:14:12 +02:00
Vladimir Malyutin
34823a5cc9 quantize : fix typo (#5211)
Fix misprint in quantize help
2024-01-30 12:57:07 +02:00
Kawrakow
27f6120aa2 llama : add Q3_K_XS (#5060)
* Add Q3_K_XS - intermediate size between Q2_K and Q3_K_S

* Q3_K_XS: quanize first 1/8 of ffn_down layers with Q4_K

Together with an importance matrix, this brings perplexity
for LLaMA-v2-70B below the perplexity of the former Q2_K
with a 800 MB smaller quantized model size.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-22 12:43:33 +02:00
Kawrakow
4629f415ed Add ability to use importance matrix for all k-quants (#4930)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 16:21:12 +02:00
Kawrakow
f6d2b332f6 2-bit quantizations (#4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 09:45:56 +02:00
Kawrakow
a9d5db805b llama : restore intended k-quants mixes for MoE models (#4872)
* Restore intended k-quants quantization mixes for MoE models

* Update Q2_K_S values in the quantize tool

Still using LLaMA-v1 PPL values in the quant description
today does not make much sense. But let's leave this update
for another PR.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-11 21:43:15 +02:00
cebtenzzre
6c1e3443ed build : link against build info instead of compiling against it (#3879)
* cmake : fix build when .git does not exist

* cmake : simplify BUILD_INFO target

* cmake : add missing dependencies on BUILD_INFO

* build : link against build info instead of compiling against it

* zig : make build info a .cpp source instead of a header

Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>

* cmake : revert change to CMP0115

---------

Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
2023-11-02 08:50:16 +02:00
Georgi Gerganov
91be989d92 ggml : quantization refactoring (#3833)
* ggml : factor all quantization code in ggml-quants

ggml-ci

* ggml-quants : fix Zig and Swift builds + quantize tool

ggml-ci

* quantize : --pure option for disabling k-quant mixtures

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-10-29 18:32:28 +02:00
Cebtenzzre
4cc4f84aea build : enable more non-default compiler warnings (#3200) 2023-09-28 17:41:44 -04:00
BarfingLemurs
9d92d67428 readme : add some recent perplexity and bpw measurements to READMES, link for k-quants (#3340)
* Update README.md

* Update README.md

* Update README.md with k-quants bpw measurements
2023-09-27 18:30:36 +03:00
Cebtenzzre
78ff726016 make : restore build-info.h dependency for several targets (#3205) 2023-09-18 10:03:53 -04:00
Cebtenzzre
481ac7803f examples : add compiler version and target to build info (#2998) 2023-09-15 16:59:49 -04:00
Cebtenzzre
4e89732b50 check C++ code with -Wmissing-declarations (#3184) 2023-09-15 15:38:27 -04:00
Cebtenzzre
bd7504dd6e fix some warnings from gcc and clang-tidy (#3038)
Co-authored-by: xaedes <xaedes@gmail.com>
2023-09-07 13:22:29 -04:00
Kerfuffle
2ac8bf40d0 Allow quantize to only copy tensors, some other improvements (#2931)
* Allow quantize tool to only copy tensors to allow repackaging models.

* Slightly better logic when requantizing.

* Change help message to go to `stdout`.
2023-09-01 08:02:48 -06:00
Cebtenzzre
4441245308 quantize : make output filename optional again (#2823)
* quantize : make output filename optional again

* quantize : fix path parsing on Windows

suggested by @slaren
2023-08-28 09:32:25 +03:00