* spec : add self speculative decoding and ngram-mod and refactor
common : use common_ prefix for common library function
llama : use LLAMA_TOKEN_NULL
spec : add self speculative decoding (no draft model required) + refactor
spec : add ngram-mod
spec : various improvements ton ngram-map + docs
spec : fix the check-rate logic of ngram-simple
common : add common_speculative_is_compat()
spec : simplify time measurement using common_time_meas
refactor common_sampler_init
refactor common_token_to_piece
refactor and fix cur_p bug
clean up
* spec : remove check rate
* spec: show warnings instead of abort
---------
Co-authored-by: firecoperana <firecoperana>
Co-authored-by: Sascha Rogmann <59577610+srogmann@users.noreply.github.com>
This implements the ability to load, unload, and scale control vectors
(representation engineering) mid-inference, following the existing
task-queue pattern used by LoRA adapters.
New Endpoints:
- GET /control-vectors
- POST /control-vectors/load
- POST /control-vectors/unload
- POST /control-vectors/apply (handles scaling)
Technical Notes:
- Centralizes vector aggregation logic to share implementation between
load, unload, and apply tasks.
- Vectors are applied globally to the model context.
- Enforces dimension validation on load to safely reject incompatible
vectors.
Co-authored-by: Gapeleon <gapeleon@users.noreply.github.com>
* server: improve speed of speculative decoding
change logs
rpc: add recompute
spec dec fix
* Fix n_batch_size not set to context size for draft model
---------
Co-authored-by: firecoperana <firecoperana>