Commit Graph

4 Commits

Author SHA1 Message Date
Kawrakow
532a05e466 CUDA: set compute parameters via command line arguments (#910)
* cuda: set compute parameters via command line arguments

* Also llama-bench

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-07 07:11:23 +02:00
Kawrakow
56fc5454ff Merge Q, K, V (#878)
* POC: merge Q, K, V into a single, contiguous tensor

Done just for Qwen3-MoE, where I see a 4% uplift in TG.
PP performance gain is sub-percent, if any.
Still, it seems it makes sense to do it in general given
the TG performance gain.

* WIP

* merge_qkv: it works for gpt-oss

...but we see a smaller TG gain (~1.5%)

* WIP

* Don't ignore the return value of create_tensors()

else, when q, k, v get merged and we are running on the CPU,
we get a crash because the backend is trying to use mmap,
but that no longer works.

* merge_qkv: bias can be required, optional, or mandatory

* merge_qkv: glm4.5moe

* merge_qkv: add command loine argument to enable

* merge_qkv: fix tensor dimensions

* merge_qkv: llama-4

* merge_qkv: qwen3 (dense)

* merge_qkv: simplify build_qwen3moe

* cohere2 - simplify graph building

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-30 10:49:48 +02:00
Kawrakow
4daff01b39 Refactor file llama.cpp (#823)
* llama_model and llama_hparams

* llama_build_context

Surprisingly small reduction in llama.cpp compile time given
the reduction in LOCs (22k -> 14k)

* LLM_TN

llama.cpp compilation: 50 s -> 33 s

* llama_quantize

* arch names

* All graph building is now in llm-build-context.cpp

* hparams loading

llama.cpp is now just 9300 LOC, but still takes 32 seconds to compile.

* We are now at 6 seconds to build the src folder

* load -> create

We are not actually loading the tensors, but just creating them.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-11 11:35:20 +03:00
Kawrakow
633e0617b0 Enable CUDA graphs for MoE models + GPT-OSS support (#689)
* gmp-oss: common

* gpt-oss: attnetion sinks, swiglu_oai

* gpt-oss: WIP llama

Model loads and runs (CPU only), but PPL is much to high
(~1500 for 1st batch vs ~200 in mainline).
Is it because of SWA, because of vocab, or did I introduce a bug somewhere?

* gpt-oss: CPU seems to be working

It was the SWA thta was missing in the previous commit.

There are issues with EOG tokens, so this still needs to be added.

* CUDA: ADD_ID

Just a copy from mainline

* gpt-oss: Seems to be working on CUDA

* gpt-oss: add sinks to the attn-vec kernels

* CUDA: add head size of 64 to new mma

Haven't turned it on yet, but observe slightly better PP and slightly
worse TG performance with that.

* gpt-oss: add ability to use -fmoe (only CUDA for now)

* Move row sums to the write place

* Add sinks to iqk flash attention

* gpt_oss: Implement -fmoe on the CPU

* Simdify swiglu_oai

Turning it off for now as performance becomes more variable,
so perhaps I'm running into thermal trottling imore often
because of making the CPU work too hard.

* llama: factor out model loader

* Builds successfully

* It runs, but mmap does not work

* Fix llama_mmap so mmap works

* Minor

* Fix CUDA after latest changes

* Attempt to use CUDA graphs with MoE models - not working

* CUDA graphs WIP - still not working

* CUDA graphs - seems to be working

Likely not all MLA variants are working.
I no longer remember why I added the q8_0 cpy that
transposes the tensor, but if really needed, this is now
missing. Also missing is q6_0.

* Make q8_0 cache work for DeepSeek models with CUDA graphs

* cuda: cpy for q6_0

* Fix llama_mmap on non-Linux platforms

* Adding forgotten file

* Iterating on Windows build failures

* cuda: re-add q8_0 -> q8_0 transpose

so mla = 2 can be used with CUDA graphs and q8_0 cache.

* Disable graphs without -fmoe

* Minor

* Turn graphs on by default

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-08-15 09:18:07 +03:00